Câu hỏi:

17/08/2025 12 Lưu

Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \(A\left( {1; - 2; - 3} \right)\); \(B\left( { - 1;4;1} \right)\) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Lập phương trình của đường thẳng đi qua trung điểm của đoạn \(AB\) và song song với \(d\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)

Trung điểm của \(AB\) là \(I\left( {0;1; - 1} \right)\)

\(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\) có VTCP là \(\overrightarrow u \left( {1; - 1;2} \right)\) nên đường thẳng \(\Delta \) cần tìm cũng có VTCP \(\overrightarrow u \left( {1; - 1;2} \right)\).

Suy ra phương trình đường thẳng \(\Delta :\,\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{x + 1}}{2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 45o

\[\left( P \right)\]qua O và nhận \[\overrightarrow {OH}  = \left( {2;1;2} \right)\]làm VTPT

\[\left( Q \right):x - y - 11 = 0\] có VTPT \[\overrightarrow n  = \left( {1;1;0} \right)\]

Ta có cosP,Q^=OH.nOH.n=12P,Q^=450

Lời giải

Đáp án: x=1y=1+2tz=22t

Ta có BC=(0; -2; -2), BD=(-1; -1; -1)

Mặt phẳng BCD có một véctơ pháp tuyến là 

Đường thẳng vuông góc với mặt phẳng ABC có một véctơ chỉ phương là u=0;2;2.

Đường thẳng đi qua B và vuông góc với mặt phẳng (BCD) có phương trình là x=1y=1+2tz=22t.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP