Câu hỏi:

19/08/2025 60 Lưu

Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \(A\left( {1; - 2; - 3} \right)\); \(B\left( { - 1;4;1} \right)\) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Lập phương trình của đường thẳng đi qua trung điểm của đoạn \(AB\) và song song với \(d\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)

Trung điểm của \(AB\) là \(I\left( {0;1; - 1} \right)\)

\(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\) có VTCP là \(\overrightarrow u \left( {1; - 1;2} \right)\) nên đường thẳng \(\Delta \) cần tìm cũng có VTCP \(\overrightarrow u \left( {1; - 1;2} \right)\).

Suy ra phương trình đường thẳng \(\Delta :\,\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{x + 1}}{2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\left( { - \frac{1}{5};\frac{2}{5};\frac{4}{5}} \right)\)

Giao điểm  của \({d_1}\)  và \({d_2}\) là nghiệm của hệ: \(\left\{ \begin{array}{l}\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\\\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x - y = 0\\x - z =  - 1\\x - 2y = 3\\x - 2z =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{5}\\y = \frac{2}{5}\\z = \frac{4}{5}\end{array} \right.\)

Lời giải

Đáp án: -3x - 2y - 10z + 23 = 0

Đường thẳng d đi qua điểm M(1; 0; 2) và có vectơ chỉ phương u=(-4; 1; 1).

Ta có: AM=(2; -3; 0); [AM, u] = (-3; -2; -10)

Mặt phẳng (P) chứa điểm A và đường thẳng d có vectơ pháp tuyến .

Vậy phương trình mặt phẳng (P) là -3(x+1) - 2(y-3) - 10(z-2) = 0  -3x - 2y - 10z + 23 = 0