Trong không gian \(Oxyz\), cho ba điểm B(1; 1; 2), C(1; -1; 0) và D(0; 0; 1). Lập phương trình đường thẳng đi qua \(B\) và vuông góc với mặt phẳng \(\left( {BCD} \right)\).
Quảng cáo
Trả lời:
Đáp án:
Ta có
Mặt phẳng có một véctơ pháp tuyến là
Đường thẳng vuông góc với mặt phẳng có một véctơ chỉ phương là .
Đường thẳng đi qua B và vuông góc với mặt phẳng (BCD) có phương trình là .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 45o
\[\left( P \right)\]qua O và nhận \[\overrightarrow {OH} = \left( {2;1;2} \right)\]làm VTPT
\[\left( Q \right):x - y - 11 = 0\] có VTPT \[\overrightarrow n = \left( {1;1;0} \right)\]
Ta cóLời giải
Đáp án: \(\left( { - \frac{1}{5};\frac{2}{5};\frac{4}{5}} \right)\)
Giao điểm của \({d_1}\) và \({d_2}\) là nghiệm của hệ: \(\left\{ \begin{array}{l}\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\\\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x - y = 0\\x - z = - 1\\x - 2y = 3\\x - 2z = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{5}\\y = \frac{2}{5}\\z = \frac{4}{5}\end{array} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.