Câu hỏi:

19/08/2025 32 Lưu

Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng \(\left( P \right)\) song song và cách đều hai đường thẳng \({d_1}:\frac{{x - 2}}{{ - 1}} = \frac{y}{1} = \frac{z}{1}\left( P \right):2y - 2z + 1 = 0\) và \({d_2}:\frac{x}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 2}}{{ - 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(\left( P \right):2y - 2z + 1 = 0\)

Ta có:\({d_1}\) đi qua điểm \(A\left( {2;0;0} \right)\) và có VTCP \({\vec u_1} = \left( { - 1;1;1} \right)\)

\({d_2}\) đi qua điểm \(B\left( {0;1;2} \right)\) và có VTCP \({\vec u_2} = \left( {2; - 1; - 1} \right)\)

Vì \(\left( P \right)\) song song với hai đường thẳng \({d_1}\) và \({d_2}\) nên VTPT của \(\left( P \right)\) là \(\vec n = [{\vec u_1},{\vec u_2}] = \left( {0;1; - 1} \right)\)

Khi đó \(\left( P \right)\) có dạng \(y - z + D = 0 \Rightarrow \) loại đáp án A và C

Lại có \(\left( P \right)\) cách đều \({d_1}\) và \({d_2}\) nên \(\left( P \right)\) đi qua trung điểm \(M\left( {0;\frac{1}{2};1} \right)\) của \(AB\)

Do đó \(\left( P \right):2y - 2z + 1 = 0\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\cos \varphi  = \frac{{7\sqrt 3 }}{{24}}\)
Media VietJack

Ta chọn hệ trục tọa độ \(Oxyz\) với \(O \equiv A\) như hình vẽ, chọn \(a = 1\) đơn vị, khi đó ta có tọa độ điểm \(B\left( {1;0;0} \right)\), \(C\left( {0;\sqrt 3 ;0} \right)\) suy ra trung điểm của \(BC\) là \(H\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\), vì \(H\) là hình chiếu của \(A'\) nên suy ra tọa độ của \(A'\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta tìm tọa độ \(B'\), gọi tọa độ \(B'\left( {x;y;z} \right)\) khi đó ta có \(\overrightarrow {A'B'}  = \overrightarrow {OB} \) nên tọa độ \(B'\left( {\frac{3}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta cũng có \(\overrightarrow {B'C}  = \left( { - \frac{3}{2};\frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\) và \(\overrightarrow {A'B}  = \left( {\frac{1}{2}; - \frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\). Từ đó ta có \(\cos \varphi  = \frac{{\left| {\overrightarrow {A'B} .\overrightarrow {B'C} } \right|}}{{\left| {\overrightarrow {A'B} } \right|.\left| {\overrightarrow {B'C} } \right|}}\) \( = \frac{7}{{2.\sqrt 6 .\sqrt 8 }} = \frac{{7\sqrt 3 }}{{24}}\).

Lời giải

Đáp án: \(\left( { - \frac{1}{5};\frac{2}{5};\frac{4}{5}} \right)\)

Giao điểm  của \({d_1}\)  và \({d_2}\) là nghiệm của hệ: \(\left\{ \begin{array}{l}\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\\\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x - y = 0\\x - z =  - 1\\x - 2y = 3\\x - 2z =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{5}\\y = \frac{2}{5}\\z = \frac{4}{5}\end{array} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP