Câu hỏi:

19/08/2025 113 Lưu

Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng \(\left( P \right)\) song song và cách đều hai đường thẳng \({d_1}:\frac{{x - 2}}{{ - 1}} = \frac{y}{1} = \frac{z}{1}\left( P \right):2y - 2z + 1 = 0\) và \({d_2}:\frac{x}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 2}}{{ - 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(\left( P \right):2y - 2z + 1 = 0\)

Ta có:\({d_1}\) đi qua điểm \(A\left( {2;0;0} \right)\) và có VTCP \({\vec u_1} = \left( { - 1;1;1} \right)\)

\({d_2}\) đi qua điểm \(B\left( {0;1;2} \right)\) và có VTCP \({\vec u_2} = \left( {2; - 1; - 1} \right)\)

Vì \(\left( P \right)\) song song với hai đường thẳng \({d_1}\) và \({d_2}\) nên VTPT của \(\left( P \right)\) là \(\vec n = [{\vec u_1},{\vec u_2}] = \left( {0;1; - 1} \right)\)

Khi đó \(\left( P \right)\) có dạng \(y - z + D = 0 \Rightarrow \) loại đáp án A và C

Lại có \(\left( P \right)\) cách đều \({d_1}\) và \({d_2}\) nên \(\left( P \right)\) đi qua trung điểm \(M\left( {0;\frac{1}{2};1} \right)\) của \(AB\)

Do đó \(\left( P \right):2y - 2z + 1 = 0\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\left( { - \frac{1}{5};\frac{2}{5};\frac{4}{5}} \right)\)

Giao điểm  của \({d_1}\)  và \({d_2}\) là nghiệm của hệ: \(\left\{ \begin{array}{l}\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\\\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x - y = 0\\x - z =  - 1\\x - 2y = 3\\x - 2z =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{5}\\y = \frac{2}{5}\\z = \frac{4}{5}\end{array} \right.\)

Lời giải

Đáp án: -3x - 2y - 10z + 23 = 0

Đường thẳng d đi qua điểm M(1; 0; 2) và có vectơ chỉ phương u=(-4; 1; 1).

Ta có: AM=(2; -3; 0); [AM, u] = (-3; -2; -10)

Mặt phẳng (P) chứa điểm A và đường thẳng d có vectơ pháp tuyến .

Vậy phương trình mặt phẳng (P) là -3(x+1) - 2(y-3) - 10(z-2) = 0  -3x - 2y - 10z + 23 = 0