Trong không gian \[Oxyz\], cho hai đường thẳng \[d:\frac{{x - 1}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 4}}{3}\] và \[d':\left\{ {\begin{array}{*{20}{c}}{x = - 1 + t}\\{y = - t}\\{z = - 2 + 3t}\end{array}} \right.\]cắt nhau. Lập phương trình mặt phẳng chứa \[d\] và \[d'\].
Trong không gian \[Oxyz\], cho hai đường thẳng \[d:\frac{{x - 1}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 4}}{3}\] và \[d':\left\{ {\begin{array}{*{20}{c}}{x = - 1 + t}\\{y = - t}\\{z = - 2 + 3t}\end{array}} \right.\]cắt nhau. Lập phương trình mặt phẳng chứa \[d\] và \[d'\].
Quảng cáo
Trả lời:

Đáp án: \[6x + 9y + z + 8 = 0\]
\[d\]có VTCP \[\overrightarrow u = ( - 2;1;3)\]và đi qua \[M(1; - 2;4)\]
\[d'\]có VTCP \[\overrightarrow {u'} = (1; - 1;3)\]và đi qua \[M'( - 1;0; - 2)\]
Từ đó ta có
\[\overrightarrow {MM'} = ( - 2;2; - 6)\]
\[{\rm{[}}\overrightarrow u ,\overrightarrow {u'} ] = (6;9;1) \ne \overrightarrow 0 \] và \[{\rm{[}}\overrightarrow u ,\overrightarrow {u'} ].\overrightarrow {MM'} = 0\]
Suy ra \[d\] cắt \[d'\].
Mặt phẳng \[(P)\] chứa \[d\] và \[d'\]đi qua giao điểm của \[d\] và \[d'\]; có VTPT \[\overrightarrow n {\rm{ = [}}\overrightarrow u ,\overrightarrow {u'} ]\]
Từ phương trình đường thẳng \[d\] và \[d'\], ta có:
\[\begin{array}{l}\frac{{ - 1 + t - 1}}{{ - 2}} = \frac{{ - t + 2}}{1} = \frac{{ - 2 + 3t - 4}}{3}\\ \Leftrightarrow \frac{{ - 2 + t}}{{ - 2}} = \frac{{ - t + 2}}{1} = \frac{{ - 6 + 3t}}{3}\\ \Leftrightarrow t = 2\end{array}\]
Từ đó suy ra giao điểm I của \[d\] và \[d'\] là \[I(1; - 2;4)\].
Khi đó ta có \[(P)\] đi qua \[I(1; - 2;4)\] và có VTPT \[\overrightarrow n {\rm{ = [}}\overrightarrow u ,\overrightarrow {u'} ] = (6;9;1)\]
Phương trình mặt phẳng \[(P)\] cần tìm là
\[6(x - 1) + 9(y + 2) + (z - 4) = 0 \Leftrightarrow 6x + 9y + z + 8 = 0\]\[\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\\c = 1\end{array} \right. \Rightarrow P = a + 2b + 3c = 1 + 2.\left( { - 2} \right) + 3.1 = 0\\\end{array}\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta chọn hệ trục tọa độ \(Oxyz\) với \(O \equiv A\) như hình vẽ, chọn \(a = 1\) đơn vị, khi đó ta có tọa độ điểm \(B\left( {1;0;0} \right)\), \(C\left( {0;\sqrt 3 ;0} \right)\) suy ra trung điểm của \(BC\) là \(H\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\), vì \(H\) là hình chiếu của \(A'\) nên suy ra tọa độ của \(A'\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta tìm tọa độ \(B'\), gọi tọa độ \(B'\left( {x;y;z} \right)\) khi đó ta có \(\overrightarrow {A'B'} = \overrightarrow {OB} \) nên tọa độ \(B'\left( {\frac{3}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta cũng có \(\overrightarrow {B'C} = \left( { - \frac{3}{2};\frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\) và \(\overrightarrow {A'B} = \left( {\frac{1}{2}; - \frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\). Từ đó ta có \(\cos \varphi = \frac{{\left| {\overrightarrow {A'B} .\overrightarrow {B'C} } \right|}}{{\left| {\overrightarrow {A'B} } \right|.\left| {\overrightarrow {B'C} } \right|}}\) \( = \frac{7}{{2.\sqrt 6 .\sqrt 8 }} = \frac{{7\sqrt 3 }}{{24}}\).
Lời giải
Đáp án: \(\left( { - \frac{1}{5};\frac{2}{5};\frac{4}{5}} \right)\)
Giao điểm của \({d_1}\) và \({d_2}\) là nghiệm của hệ: \(\left\{ \begin{array}{l}\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\\\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x - y = 0\\x - z = - 1\\x - 2y = 3\\x - 2z = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{5}\\y = \frac{2}{5}\\z = \frac{4}{5}\end{array} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.