Câu hỏi:

19/08/2025 94 Lưu

Trong không gian \[Oxyz\]cho ba đường thẳng \[d:\frac{x}{1} = \frac{y}{1} = \frac{{z + 1}}{{ - 2}},\]\[{\Delta _1}:\frac{{x - 3}}{2} = \frac{y}{1} = \frac{{z - 1}}{1},\]\[{\Delta _2}:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{z}{1}\]. Đường thẳng \[\Delta \]vuông góc với \[d\] đồng thời cắt \[{\Delta _1},{\Delta _2}\] tương ứng tại \[H,K\] sao cho độ dài \[HK\] nhỏ nhất. Biết rằng \[\Delta \] có một vectơ chỉ phương \[\overrightarrow u \left( {h;k;1} \right).\] Tính giá trị \[h - k\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \[h - k = 0\]

\[H \in {\Delta _1} \Leftrightarrow H\left( {3 + 2t;t;1 + t} \right)\].

\[K \in {\Delta _2} \Leftrightarrow K\left( {1 + m;2 + 2m;m} \right)\].

Ta có\[\overrightarrow {HK}  = \left( {m - 2t - 2;2m - t + 2;m - t - 1} \right)\].

Đường thẳng \[d\] có một VTCP là \[\overrightarrow {{u_d}}  = \left( {1;1; - 2} \right)\].

\[\Delta  \bot d \Leftrightarrow \]\[\overrightarrow {{u_d}} .\overrightarrow {HK}  = 0\]\[ \Leftrightarrow m - t + 2 = 0 \Leftrightarrow m = t - 2 \Rightarrow \overrightarrow {HK}  = \left( { - t - 4;t - 2; - 3} \right).\]

Ta có\[H{K^2} = {\left( { - t - 4} \right)^2} + {\left( {t - 2} \right)^2} + {\left( { - 3} \right)^2} = 2{\left( {t + 1} \right)^2} + 27 \ge 27,\forall t \in \mathbb{R}\]

\[ \Rightarrow minHK = \sqrt {27} ,\]đạt được khi \[t =  - 1\].

Khi đó ta có \[\overrightarrow {HK}  = \left( { - 3; - 3; - 3} \right)\], suy ra \[\overrightarrow u \left( {1;1;1} \right) \Rightarrow h = k = 1 \Rightarrow h - k = 0.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(\left( { - \frac{1}{5};\frac{2}{5};\frac{4}{5}} \right)\)

Giao điểm  của \({d_1}\)  và \({d_2}\) là nghiệm của hệ: \(\left\{ \begin{array}{l}\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\\\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x - y = 0\\x - z =  - 1\\x - 2y = 3\\x - 2z =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{5}\\y = \frac{2}{5}\\z = \frac{4}{5}\end{array} \right.\)

Lời giải

Đáp án: -3x - 2y - 10z + 23 = 0

Đường thẳng d đi qua điểm M(1; 0; 2) và có vectơ chỉ phương u=(-4; 1; 1).

Ta có: AM=(2; -3; 0); [AM, u] = (-3; -2; -10)

Mặt phẳng (P) chứa điểm A và đường thẳng d có vectơ pháp tuyến .

Vậy phương trình mặt phẳng (P) là -3(x+1) - 2(y-3) - 10(z-2) = 0  -3x - 2y - 10z + 23 = 0