Câu hỏi:

17/08/2025 5 Lưu

Trong không gian \[Oxyz\]cho ba đường thẳng \[d:\frac{x}{1} = \frac{y}{1} = \frac{{z + 1}}{{ - 2}},\]\[{\Delta _1}:\frac{{x - 3}}{2} = \frac{y}{1} = \frac{{z - 1}}{1},\]\[{\Delta _2}:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{z}{1}\]. Đường thẳng \[\Delta \]vuông góc với \[d\] đồng thời cắt \[{\Delta _1},{\Delta _2}\] tương ứng tại \[H,K\] sao cho độ dài \[HK\] nhỏ nhất. Biết rằng \[\Delta \] có một vectơ chỉ phương \[\overrightarrow u \left( {h;k;1} \right).\] Tính giá trị \[h - k\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \[h - k = 0\]

\[H \in {\Delta _1} \Leftrightarrow H\left( {3 + 2t;t;1 + t} \right)\].

\[K \in {\Delta _2} \Leftrightarrow K\left( {1 + m;2 + 2m;m} \right)\].

Ta có\[\overrightarrow {HK}  = \left( {m - 2t - 2;2m - t + 2;m - t - 1} \right)\].

Đường thẳng \[d\] có một VTCP là \[\overrightarrow {{u_d}}  = \left( {1;1; - 2} \right)\].

\[\Delta  \bot d \Leftrightarrow \]\[\overrightarrow {{u_d}} .\overrightarrow {HK}  = 0\]\[ \Leftrightarrow m - t + 2 = 0 \Leftrightarrow m = t - 2 \Rightarrow \overrightarrow {HK}  = \left( { - t - 4;t - 2; - 3} \right).\]

Ta có\[H{K^2} = {\left( { - t - 4} \right)^2} + {\left( {t - 2} \right)^2} + {\left( { - 3} \right)^2} = 2{\left( {t + 1} \right)^2} + 27 \ge 27,\forall t \in \mathbb{R}\]

\[ \Rightarrow minHK = \sqrt {27} ,\]đạt được khi \[t =  - 1\].

Khi đó ta có \[\overrightarrow {HK}  = \left( { - 3; - 3; - 3} \right)\], suy ra \[\overrightarrow u \left( {1;1;1} \right) \Rightarrow h = k = 1 \Rightarrow h - k = 0.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 45o

\[\left( P \right)\]qua O và nhận \[\overrightarrow {OH}  = \left( {2;1;2} \right)\]làm VTPT

\[\left( Q \right):x - y - 11 = 0\] có VTPT \[\overrightarrow n  = \left( {1;1;0} \right)\]

Ta có cosP,Q^=OH.nOH.n=12P,Q^=450

Lời giải

Đáp án: x=1y=1+2tz=22t

Ta có BC=(0; -2; -2), BD=(-1; -1; -1)

Mặt phẳng BCD có một véctơ pháp tuyến là 

Đường thẳng vuông góc với mặt phẳng ABC có một véctơ chỉ phương là u=0;2;2.

Đường thẳng đi qua B và vuông góc với mặt phẳng (BCD) có phương trình là x=1y=1+2tz=22t.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP