Trong không gian \(Oxyz\), cho hai điểm \(A\left( {3\,;\,1\,;\,2} \right)\), \(B\left( { - 3\,;\, - 1\,;\,0} \right)\) và mặt phẳng \(\left( P \right):x + y + 3z - 14 = 0\). Điểm \(M\) thuộc mặt phẳng \(\left( P \right)\) sao cho \(\Delta MAB\) vuông tại \(M\). Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {Oxy} \right)\).
Trong không gian \(Oxyz\), cho hai điểm \(A\left( {3\,;\,1\,;\,2} \right)\), \(B\left( { - 3\,;\, - 1\,;\,0} \right)\) và mặt phẳng \(\left( P \right):x + y + 3z - 14 = 0\). Điểm \(M\) thuộc mặt phẳng \(\left( P \right)\) sao cho \(\Delta MAB\) vuông tại \(M\). Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {Oxy} \right)\).
Quảng cáo
Trả lời:

Đáp án: \(d\left( {M\,,\,\left( {Oxy} \right)} \right) = 4\)
Gọi \(M\left( {x\,;\,y\,;\,z} \right)\) là điểm cần tìm.
\(\overrightarrow {AM} = \left( {x - 3\,;\,y - 1\,;\,z - 2} \right)\), \(\overrightarrow {BM} = \left( {x + 3\,;\,y + 1\,;\,z} \right)\).
Vì \(\Delta MAB\) vuông tại \(M\) nên \(\overrightarrow {AM} .\overrightarrow {BM} = 0 \Leftrightarrow \left( {x - 3} \right)\left( {x + 3} \right) + \left( {y - 1} \right)\left( {y + 1} \right) + z\left( {z - 2} \right) = 0\)
\[ \Leftrightarrow {x^2} - 9 + {y^2} - 1 + {z^2} - 2z = 0 \Leftrightarrow {x^2} + {y^2} + {\left( {z - 1} \right)^2} = 11\].
\( \Rightarrow M\) thuộc mặt cầu \(\left( S \right)\) có tâm \(I\left( {0\,;\,0\,;\,1} \right)\) và bán kính \(R = \sqrt {11} \).
Nhận xét thấy \(d\left( {I\,,\,\left( P \right)} \right) = \frac{{\left| {0 + 0 + 3.1 - 14} \right|}}{{\sqrt {{1^2} + {1^2} + {3^3}} }} = \sqrt {11} = R\).
\( \Rightarrow \left( P \right)\) tiếp xúc với \(\left( S \right)\) tại \(M\)
\( \Rightarrow M\) là hình chiếu vuông góc của \(I\) trên \(\left( P \right)\).
Vậy \(d\left( {M\,,\,\left( {Oxy} \right)} \right) = \left| 4 \right| = 4\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta chọn hệ trục tọa độ \(Oxyz\) với \(O \equiv A\) như hình vẽ, chọn \(a = 1\) đơn vị, khi đó ta có tọa độ điểm \(B\left( {1;0;0} \right)\), \(C\left( {0;\sqrt 3 ;0} \right)\) suy ra trung điểm của \(BC\) là \(H\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\), vì \(H\) là hình chiếu của \(A'\) nên suy ra tọa độ của \(A'\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta tìm tọa độ \(B'\), gọi tọa độ \(B'\left( {x;y;z} \right)\) khi đó ta có \(\overrightarrow {A'B'} = \overrightarrow {OB} \) nên tọa độ \(B'\left( {\frac{3}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta cũng có \(\overrightarrow {B'C} = \left( { - \frac{3}{2};\frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\) và \(\overrightarrow {A'B} = \left( {\frac{1}{2}; - \frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\). Từ đó ta có \(\cos \varphi = \frac{{\left| {\overrightarrow {A'B} .\overrightarrow {B'C} } \right|}}{{\left| {\overrightarrow {A'B} } \right|.\left| {\overrightarrow {B'C} } \right|}}\) \( = \frac{7}{{2.\sqrt 6 .\sqrt 8 }} = \frac{{7\sqrt 3 }}{{24}}\).
Lời giải
Đáp án: \(\left( { - \frac{1}{5};\frac{2}{5};\frac{4}{5}} \right)\)
Giao điểm của \({d_1}\) và \({d_2}\) là nghiệm của hệ: \(\left\{ \begin{array}{l}\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\\\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x - y = 0\\x - z = - 1\\x - 2y = 3\\x - 2z = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{5}\\y = \frac{2}{5}\\z = \frac{4}{5}\end{array} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.