Có 6 quả bóng có cùng kích thước và khối lượng, mỗi quả bóng ghi một trong các số từ 10 đến 15 được để vào hai chiếc hộp. Hộp màu xanh chứa các quả bóng ghi số chẵn, hộp màu vàng chứa các quả bóng ghi số lẻ. Hai bạn Hà và Mạnh chơi một trò chơi như sau: Hà lấy ngẫu nhiên một quả bóng ở hộp màu xanh, Mạnh lấy ngẫu nhiên một quả bóng ở hộp màu vàng và xem số được ghi trên hai quả bóng, bạn nào lấy được quả bóng có số lớn hơn thì thắng.
a) Mô tả không gian mẫu của phép thử trên.
b) Tính xác suất của biến cố B: “Hà chọn được quả bóng có số lớn hơn của Mạnh”.
Có 6 quả bóng có cùng kích thước và khối lượng, mỗi quả bóng ghi một trong các số từ 10 đến 15 được để vào hai chiếc hộp. Hộp màu xanh chứa các quả bóng ghi số chẵn, hộp màu vàng chứa các quả bóng ghi số lẻ. Hai bạn Hà và Mạnh chơi một trò chơi như sau: Hà lấy ngẫu nhiên một quả bóng ở hộp màu xanh, Mạnh lấy ngẫu nhiên một quả bóng ở hộp màu vàng và xem số được ghi trên hai quả bóng, bạn nào lấy được quả bóng có số lớn hơn thì thắng.
a) Mô tả không gian mẫu của phép thử trên.
b) Tính xác suất của biến cố B: “Hà chọn được quả bóng có số lớn hơn của Mạnh”.
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 10 có đáp án !!
Quảng cáo
Trả lời:

a) Không gian mẫu của phép thử là:
\(\Omega = \left\{ {\left( {10,\,\,11} \right);\,\,\left( {10,\,\,13} \right);\,\,\left( {10,\,\,15} \right);\,\,\left( {12,\,\,11} \right);\,\,\left( {12,\,\,13} \right);\,\,\left( {12,\,\,15} \right);\,\,\left( {14,\,\,11} \right);\,\,\left( {14,\,\,13} \right);\,\,\left( {14,\,\,15} \right)} \right\}.\)
b) Không gian mẫu có 9 phần tử.
Có 3 kết quả thuận lợi cho biến cố B là: \(\left( {12,\,\,11} \right);\,\,\left( {14,\,\,11} \right);\,\,\left( {14,\,\,13} \right).\)
Vậy xác suất của biến cố B là: \(\frac{3}{9} = \frac{1}{3}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Độ dài dây \(AB\) nhỏ nhất khi \(A\) và \(B\) có vị trí như hình vẽ.
Xét \(\Delta ABH\) vuông tại \(H\), ta có: \[HB = AB \cdot \sin \widehat {BAH}\].
Suy ra \[AB = \frac{{HB}}{{\sin \widehat {BAH}}} \approx \frac{{3,146}}{{\sin 4^\circ }} \approx 45,1{\rm{\;(m)}}{\rm{.}}\]
Vậy độ dài dây \(AB\) nhỏ nhất khoảng \(45,1{\rm{\;m}}.\)
Đáp án: 45,1.
Lời giải
Đường tròn đi qua bốn đỉnh của hình chữ nhật \(MNPQ\) là đường tròn đường kính \(MP.\)
Xét \(\Delta MPQ\) vuông tại \(Q,\) theo định lí Pythagore, ta có:
\(M{P^2} = M{Q^2} + P{Q^2} = {5^2} + {12^2} = 169.\) Do đó \(MP = 13{\rm{\;cm}}.\)
Vậy đường kính của đường tròn đi qua bốn đỉnh của hình chữ nhật \(MNPQ\) là \(13{\rm{\;cm}}.\) Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.