Tại cùng một thời điểm, có hai người đang ở hai vị trí \[A\] và \[B\] cách nhau \[1000\] mét. Người thứ nhất ở vị trí \[B\] và đi về phía điểm \[A\] với vận tốc \[2{\rm{\;m/s}}\] và người thứ hai ở vị trí \[A\] đi về phía điểm \[C\] với vận tốc \[1,5{\rm{\;m/s}}.\] Biết rằng \[AB\] và \[AC\] vuông góc với nhau. Hãy cho biết sau bao nhiêu giây thì khoảng cách giữa hai người này nhỏ nhất?

Tại cùng một thời điểm, có hai người đang ở hai vị trí \[A\] và \[B\] cách nhau \[1000\] mét. Người thứ nhất ở vị trí \[B\] và đi về phía điểm \[A\] với vận tốc \[2{\rm{\;m/s}}\] và người thứ hai ở vị trí \[A\] đi về phía điểm \[C\] với vận tốc \[1,5{\rm{\;m/s}}.\] Biết rằng \[AB\] và \[AC\] vuông góc với nhau. Hãy cho biết sau bao nhiêu giây thì khoảng cách giữa hai người này nhỏ nhất?
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 10 có đáp án !!
Quảng cáo
Trả lời:

Gọi \(x\) (giây) là thời gian di chuyển của mỗi người \(\left( {0 < x < 500} \right).\)
Quãng đường người thứ nhất đi được là: \(BE = 2x{\rm{\;(m)}}{\rm{.}}\)
Quãng đường người thứ hai đi được là: \(AD = 1,5x{\rm{\;(m)}}{\rm{.}}\)
Ta có \(AE = AB - BE = 1\,\,000 - 2x{\rm{\;(m)}}{\rm{.}}\)
Khoảng cách giữa hai người là nhỏ nhất khi DE ngắn nhất.
Xét \(\Delta ADE\) vuông tại \(A,\) theo định lí Pythagore, ta có:
\(D{E^2} = A{D^2} + A{E^2} = {\left( {1,5x} \right)^2} + {\left( {1\,\,000 - 2x} \right)^2} = 2,25{x^2} + 4{x^2} - 4\,\,000x + 1\,\,000\,\,000\)
\( = 6,25{x^2} - 4\,\,000x + 1\,\,000\,\,000 = 6,25\left( {{x^2} - 640x + 102\,\,400} \right) + 360\,\,000\)
\( = 6,25{\left( {x - 320} \right)^2} + 360\,\,000.\)
Ta có: \({\left( {x - 320} \right)^2} \ge 0\) với mọi \(x\) nên \(6,25{\left( {x - 320} \right)^2} + 360\,\,000 \ge 360\,\,000.\)
Do đó \(D{E^2} \ge 360\,\,000\) nên \(DE \ge 600\).
Dấu “=” xảy ra khi \[{\left( {x - 320} \right)^2} = 0\] hay \(x = 320.\)
Vậy sau \[320\] giây thì khoảng cách giữa hai người là nhỏ nhất.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Độ dài dây \(AB\) nhỏ nhất khi \(A\) và \(B\) có vị trí như hình vẽ.
Xét \(\Delta ABH\) vuông tại \(H\), ta có: \[HB = AB \cdot \sin \widehat {BAH}\].
Suy ra \[AB = \frac{{HB}}{{\sin \widehat {BAH}}} \approx \frac{{3,146}}{{\sin 4^\circ }} \approx 45,1{\rm{\;(m)}}{\rm{.}}\]
Vậy độ dài dây \(AB\) nhỏ nhất khoảng \(45,1{\rm{\;m}}.\)
Đáp án: 45,1.
Lời giải
Đường tròn đi qua bốn đỉnh của hình chữ nhật \(MNPQ\) là đường tròn đường kính \(MP.\)
Xét \(\Delta MPQ\) vuông tại \(Q,\) theo định lí Pythagore, ta có:
\(M{P^2} = M{Q^2} + P{Q^2} = {5^2} + {12^2} = 169.\) Do đó \(MP = 13{\rm{\;cm}}.\)
Vậy đường kính của đường tròn đi qua bốn đỉnh của hình chữ nhật \(MNPQ\) là \(13{\rm{\;cm}}.\) Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.