Câu hỏi:

20/08/2025 8 Lưu

Cặp số \[\left( { - 2\,;\,\, - 3} \right)\] là nghiệm của hệ phương trình nào sau đây?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta thay \[x = - 2\,;\,\,y = - 3\] vào từng hệ phương trình:

⦁ Xét phương án A. \[\left\{ \begin{array}{l}x - 2y = 3\\2x + y = 4\end{array} \right..\]

Thay \[x = - 2\,;\,\,y = - 3\] vào hệ phương trình trên, ta được \[\left\{ \begin{array}{l} - 2 - 2 \cdot \left( { - 3} \right) = 4 \ne 3\\2 \cdot \left( { - 2} \right) + \left( { - 3} \right) = 7 \ne 4\end{array} \right..\]

Do đó cặp số \[\left( { - 2\,;\,\, - 3} \right)\] không phải là nghiệm của hệ phương trình ở phương án A.

⦁ Xét phương án B. \[\left\{ \begin{array}{l}2x - y = - 1\\x - 3y = 8\end{array} \right..\]

Thay \[x = - 2\,;\,\,y = - 3\] vào hệ phương trình trên, ta được \[\left\{ \begin{array}{l}2 \cdot \left( { - 2} \right) - \left( { - 3} \right) = - 1\\\left( { - 2} \right) - 3 \cdot \left( { - 3} \right) = 7 \ne 8\end{array} \right..\]

Do đó cặp số \[\left( { - 2\,;\,\, - 3} \right)\] không phải là nghiệm của hệ phương trình ở phương án B.

⦁ Xét phương án C. \[\left\{ \begin{array}{l}2x - y = - 1\\x - 3y = 7\end{array} \right..\]

Thay \[x = - 2\,;\,\,y = - 3\] vào hệ phương trình trên, ta được \[\left\{ \begin{array}{l}2 \cdot \left( { - 2} \right) - \left( { - 3} \right) = - 1\\\left( { - 2} \right) - 3 \cdot \left( { - 3} \right) = 7\end{array} \right..\]

Do đó cặp số \[\left( { - 2\,;\,\, - 3} \right)\] là nghiệm của hệ phương trình ở phương án C.

⦁ Xét phương án D. \[\left\{ \begin{array}{l}4x - 2y = 0\\x - 3y = 5\end{array} \right..\]

Thay \[x = - 2\,;\,\,y = - 3\] vào hệ phương trình trên, ta được \[\left\{ \begin{array}{l}4 \cdot \left( { - 2} \right) - 2 \cdot \left( { - 3} \right) = - 2 \ne 0\\\left( { - 2} \right) - 3 \cdot \left( { - 3} \right) = 7 \ne 5\end{array} \right..\]

Do đó cặp số \[\left( { - 2\,;\,\, - 3} \right)\] không phải là nghiệm của hệ phương trình ở phương án D.

Vậy cặp số \[\left( { - 2\,;\,\, - 3} \right)\] là nghiệm của hệ phương trình ở phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 120.

Đổi 20 phút \( = \frac{1}{3}\) giờ.

Gọi quãng đường \[AB\] \[x\,\,\left( {{\rm{km}}} \right)\,\,\left( {x > 0} \right).\]

Thời gian đi từ A đến B \(\frac{x}{{40}}\) (giờ).

Lúc về người đó tăng vận tốc thêm 5 km/h nên vận tốc lúc về của người đó là \[40 + 5 = 45\,\,\left( {{\rm{km/h}}} \right).\]

Thời gian đi từ B về A \(\frac{x}{{45}}\) (giờ).

Vì thời gian lúc về ít hơn thời gian lúc đi là 20 phút (\( = \frac{1}{3}\) giờ) nên ta có phương trình:

\(\frac{x}{{40}} - \frac{x}{{45}} = \frac{1}{3}\)

\(\frac{{9x}}{{360}} - \frac{{8x}}{{360}} = \frac{1}{3}\)

\(9x - 8x = 120\)

\(x = 120\) (TMĐK).

Vậy quãng đường AB là 120 km.

Lời giải

Đáp án:     a) Đúng.              b) Sai.                  c) Sai.                  d) Đúng.

a) Xét \[ABC\] cân tại \[A\] \[AM\] là đường trung tuyến nên đồng thời là đường phân giác và đường cao của tam giác.

Xét \[\Delta ABM\] vuông tại \[M,\] khi đó \[\widehat {BAM}\] B là hai góc phụ nhau, nên sin BAM  cos B  cos . Do đó ý a) Đúng.

b) và c)

Xét \[\Delta ABM\] vuông tại \[M,\] ta có: \(\cos B = \frac{{BM}}{{AB}}\,;\,\,\sin B = \frac{{AM}}{{AB}}.\)

Suy ra \[BM = AB \cdot \cos B = 2a \cdot \cos a\] \[AM = \;AB \cdot \sin B = \;2a \cdot \sin \alpha .\]

Do đó ý b) và c) đều Sai.

d) Ta có \[BC = 2BM = 2 \cdot 2a \cdot \cos \alpha = 4a \cdot \cos \alpha .\]

Diện tích tam giác \[ABC\] là: \[S = \frac{1}{2} \cdot AM \cdot BC = \frac{1}{2} \cdot \left( {2a \cdot \sin \alpha } \right) \cdot \left( {4a \cdot \cos \alpha } \right) = 4{a^2} \cdot \sin \alpha \cdot \cos \alpha .\]

Do đó ý d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP