Câu hỏi:

20/08/2025 11 Lưu

Camera quan sát tại đường X trong 365 ngày liên tiếp ghi nhận 217 bị tắc đường vào giờ cao điểm buổi sáng (từ 7 giờ 30 phút đến 8 giờ). Từ số liệu thống kê đó, hãy dự đoán xem trong 100 ngày có khoảng bao nhiêu ngày bị tắc đường vào giờ cao điểm buổi sáng tại đường X?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 59.

Gọi \[k\] số ngày trong 100 ngày ghi nhận tắc đường vào giờ cao điểm buổi sáng tại đường \[X.\]

Ta \(\frac{k}{{100}} \approx \frac{{217}}{{365}},\) suy ra \(k \approx 100 \cdot \frac{{217}}{{365}} \approx 59.\)

Vậy ta dự đoán trong 100  ngày tới có khoảng 59 ngày tắc đường trong giờ cao điểm tại đường \[X.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 120.

Đổi 20 phút \( = \frac{1}{3}\) giờ.

Gọi quãng đường \[AB\] \[x\,\,\left( {{\rm{km}}} \right)\,\,\left( {x > 0} \right).\]

Thời gian đi từ A đến B \(\frac{x}{{40}}\) (giờ).

Lúc về người đó tăng vận tốc thêm 5 km/h nên vận tốc lúc về của người đó là \[40 + 5 = 45\,\,\left( {{\rm{km/h}}} \right).\]

Thời gian đi từ B về A \(\frac{x}{{45}}\) (giờ).

Vì thời gian lúc về ít hơn thời gian lúc đi là 20 phút (\( = \frac{1}{3}\) giờ) nên ta có phương trình:

\(\frac{x}{{40}} - \frac{x}{{45}} = \frac{1}{3}\)

\(\frac{{9x}}{{360}} - \frac{{8x}}{{360}} = \frac{1}{3}\)

\(9x - 8x = 120\)

\(x = 120\) (TMĐK).

Vậy quãng đường AB là 120 km.

Lời giải

Đáp án:     a) Đúng.              b) Sai.                  c) Sai.                  d) Đúng.

a) Xét \[ABC\] cân tại \[A\] \[AM\] là đường trung tuyến nên đồng thời là đường phân giác và đường cao của tam giác.

Xét \[\Delta ABM\] vuông tại \[M,\] khi đó \[\widehat {BAM}\] B là hai góc phụ nhau, nên sin BAM  cos B  cos . Do đó ý a) Đúng.

b) và c)

Xét \[\Delta ABM\] vuông tại \[M,\] ta có: \(\cos B = \frac{{BM}}{{AB}}\,;\,\,\sin B = \frac{{AM}}{{AB}}.\)

Suy ra \[BM = AB \cdot \cos B = 2a \cdot \cos a\] \[AM = \;AB \cdot \sin B = \;2a \cdot \sin \alpha .\]

Do đó ý b) và c) đều Sai.

d) Ta có \[BC = 2BM = 2 \cdot 2a \cdot \cos \alpha = 4a \cdot \cos \alpha .\]

Diện tích tam giác \[ABC\] là: \[S = \frac{1}{2} \cdot AM \cdot BC = \frac{1}{2} \cdot \left( {2a \cdot \sin \alpha } \right) \cdot \left( {4a \cdot \cos \alpha } \right) = 4{a^2} \cdot \sin \alpha \cdot \cos \alpha .\]

Do đó ý d) Đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP