Câu hỏi:

12/09/2025 4 Lưu

C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 1 đến câu 4.

Có bao nhiêu số nguyên \(n\) để \(P\left( n \right):\)\(2{n^3} + {n^2} + 7n + 1\) chia hết cho \(2n - 1\)” là mệnh đề đúng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(2{n^3} + {n^2} + 7n + 1 = \left( {{n^2} + n + 4} \right)\left( {2n - 1} \right) + 5\).

\(2{n^3} + {n^2} + 7n + 1\) chia hết cho \(2n - 1\) \( \Leftrightarrow \)\(5\) chia hết cho \(2n - 1\)\( \Leftrightarrow \left[ \begin{array}{l}2n - 1 = 1\\2n - 1 = - 1\\2n - 1 = 5\\2n - 1 = - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}n = 1\\n = 0\\n = 3\\n = - 2\end{array} \right.\).

Vậy có 4 giá trị nguyên của \(n\).

Đáp án: \(4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có \({\sin ^2}\alpha + c{\rm{o}}{{\rm{s}}^2}\alpha = 1 \Rightarrow {\sin ^2}\alpha = 1 - c{\rm{o}}{{\rm{s}}^2}\alpha = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9}\).

Vậy \(P = \frac{8}{9} + 3 \cdot {\left( {\frac{1}{3}} \right)^2} = \frac{{11}}{9}\). Chọn D.

Lời giải

Do \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = 2 \Rightarrow \sin \alpha \ne 0\).

Chia cả tử và mẫu của biểu thức \(P\) cho \(\sin \alpha \), ta có:

P=3+4cosαsinα2cosαsinα=3+4cotα2cotα=221122a=22;b=11.

Vậy \(a + 2b = - 22 + 2 \cdot 11 = 0\).

Đáp án: 0.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP