PHẦN I. CÂU TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN
Cho hàm số \(y = f\left( x \right)\)liên tục trên \[\mathbb{R}\]thỏa mãn giá trị nhỏ nhất của hàm số trên \[\mathbb{R}\]là \(5\). Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:

Ta có định nghĩa giá trị nhỏ nhất của hàm số: Cho hàm số \(y = f\left( x \right)\)xác định trên tập \(D\). Số \(m\)được gọi là giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\)trên tập \(D\)nếu \(f\left( x \right) \ge m\)với mọi \(x\)thuộc \(D\)và tồn tại \({x_0} \in D\)sao cho \(f\left( {{x_0}} \right) = m\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
TXĐ: \(D = \mathbb{R}\)
Ta có \( - 1 \le \sin 2x \le 1\) nên suy ra \(1 \le \sin 2x + 2 \le 3\). Do đó \({y_{\max }} = 3;\,{y_{\min }} = 1\) nên
\({y_{\max }} + \,{y_{\min }} = 3 + 1 = 4\).
Câu 2
Lời giải
TXĐ: \(D = \left[ { - 1; + \infty } \right)\)
Ta có \(\sqrt {x + 1} \ge 0,\,\forall x \in \left[ { - 1; + \infty } \right)\) nên GTNN của hàm số đã cho là \(0\), đạt được khi \(x = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.