Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.

Chọn khẳng định đúng trong các khẳng định sau:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.
Quảng cáo
Trả lời:

Dựa vào bẳng biến thiên ta thấy hàm số \(y = f\left( x \right)\) không có giá trị nhỏ nhất trên khoảng \(\left( { - 2; + \infty } \right)\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
TXĐ: \(D = \mathbb{R}\)
Ta có \( - 1 \le \sin 2x \le 1\) nên suy ra \(1 \le \sin 2x + 2 \le 3\). Do đó \({y_{\max }} = 3;\,{y_{\min }} = 1\) nên
\({y_{\max }} + \,{y_{\min }} = 3 + 1 = 4\).
Câu 2
Lời giải
TXĐ: \(D = \left[ { - 1; + \infty } \right)\)
Ta có \(\sqrt {x + 1} \ge 0,\,\forall x \in \left[ { - 1; + \infty } \right)\) nên GTNN của hàm số đã cho là \(0\), đạt được khi \(x = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.