Quảng cáo
Trả lời:
Ta có \(y' = \frac{{2x\left( {x + 1} \right) - {x^2}.1}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\,\,\end{array} \right.\). Loại \(x = - 2\) vì không thuộc đoạn \(\left[ {0;2} \right]\).
\(y\left( 0 \right) = 0;\,\,y\left( 2 \right) = \frac{4}{3}\). Do đó GTLN của hàm số trên đoạn \(\left[ {0;2} \right]\) là \(\frac{4}{3}\) đạt được tại \(x = 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
TXĐ: \(D = \mathbb{R}\)
Ta có \( - 1 \le \sin 2x \le 1\) nên suy ra \(1 \le \sin 2x + 2 \le 3\). Do đó \({y_{\max }} = 3;\,{y_{\min }} = 1\) nên
\({y_{\max }} + \,{y_{\min }} = 3 + 1 = 4\).
Câu 2
Lời giải
TXĐ: \(D = \left[ { - 1; + \infty } \right)\)
Ta có \(\sqrt {x + 1} \ge 0,\,\forall x \in \left[ { - 1; + \infty } \right)\) nên GTNN của hàm số đã cho là \(0\), đạt được khi \(x = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;2} \right]\) và có đồ thị như hình vẽ sau Giá trị lớn nhất của hàm số \(y = f\left( x \right)\) trên đoạn \[\left[ { - 1;2} \right]\] là A. \[3\]. B. \[ - 1\]. C. \[1\]. D. \[2\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/1-1759142817.jpg)
![Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên trên đoạn \(\left[ {0;3} \right]\) như sau: Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ {0;3} \right]\) là A. \(4\). B. \(1\). C. \(0\). D. \( - \;4\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/1-1759142765.png)