Cho hàm số \(y = f\left( x \right) = {\log _2}\left( {{x^2} - 3x + 2} \right)\)
a) Hàm số có giá trị lớn nhất trên khoảng \(\left( {2; + \infty } \right)\).
b) Hàm số luôn có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn \(\left[ { - 1;0} \right]\).
c) Trên đoạn \(\left[ { - 1;0} \right]\) hàm số có giá trị nhỏ nhất bằng 1.
d) Gọi \({m_0}\) là giá trị của tham số \(m\) để hàm số \(g\left( x \right) = {2^{f\left( x \right)}} + m\) có giá trị nhỏ nhất trên đoạn \(\left[ {3;4} \right]\) bằng \( - 3\). Khi đó \({m_0} \in \left( { - 5;0} \right)\).
Cho hàm số \(y = f\left( x \right) = {\log _2}\left( {{x^2} - 3x + 2} \right)\)
a) Hàm số có giá trị lớn nhất trên khoảng \(\left( {2; + \infty } \right)\).
b) Hàm số luôn có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn \(\left[ { - 1;0} \right]\).
c) Trên đoạn \(\left[ { - 1;0} \right]\) hàm số có giá trị nhỏ nhất bằng 1.
d) Gọi \({m_0}\) là giá trị của tham số \(m\) để hàm số \(g\left( x \right) = {2^{f\left( x \right)}} + m\) có giá trị nhỏ nhất trên đoạn \(\left[ {3;4} \right]\) bằng \( - 3\). Khi đó \({m_0} \in \left( { - 5;0} \right)\).
Quảng cáo
Trả lời:

Hàm số có tập xác định \(D = \left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \).
b) ĐÚNG
Vì \(\left[ { - 1;0} \right] \subset D\) và hàm số liên tục trên \(\left[ { - 1;0} \right]\) nên luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn này.
c) ĐÚNG
\(f\left( x \right) = {\log _2}\left( {{x^2} - 3x + 2} \right) \Rightarrow f'\left( x \right) = \frac{{2x - 3}}{{\left( {{x^2} - 3x + 2} \right)\ln 2}}\)
\(f'\left( x \right) = 0 \Leftrightarrow x = - \frac{3}{2} \notin \left[ { - 1;0} \right]\).
\(\begin{array}{l}f\left( { - 1} \right) = {\log _2}6\\f\left( 0 \right) = 1 < {\log _2}6\end{array}\)
Vậy \(\mathop {\min }\limits_{\left[ { - 1;0} \right]} f\left( x \right) = 1\).
d) SAI
TXĐ \(D = \left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\) chứa \(\left[ {3;4} \right]\).
\(g\left( x \right) = {2^{f\left( x \right)}} + m = {2^{{{\log }_2}\left( {{x^2} - 3x + 2} \right)}} + m = {x^2} - 3x + 2 + m\).
Có \(g'\left( x \right) = 2x - 3,g'\left( x \right) = 0 \Leftrightarrow x = \frac{3}{2} \notin \left[ {3;4} \right]\). Mà hàm số đồng biến trên \(\left[ {3;4} \right]\) nên \(\mathop {\min }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 3 \right) = 2 + m\).
Theo đề ta có \(2 + m = - 3 \Leftrightarrow m = - 5\)
Vậy \({m_0} = - 5 \in \left( { - 5;0} \right)\)là sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
TXĐ: \(D = \mathbb{R}\)
Ta có \( - 1 \le \sin 2x \le 1\) nên suy ra \(1 \le \sin 2x + 2 \le 3\). Do đó \({y_{\max }} = 3;\,{y_{\min }} = 1\) nên
\({y_{\max }} + \,{y_{\min }} = 3 + 1 = 4\).
Câu 2
Lời giải
TXĐ: \(D = \left[ { - 1; + \infty } \right)\)
Ta có \(\sqrt {x + 1} \ge 0,\,\forall x \in \left[ { - 1; + \infty } \right)\) nên GTNN của hàm số đã cho là \(0\), đạt được khi \(x = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.