PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Tìm giá trị nhỏ nhất của hàm số \(f(x) = \frac{{{x^2} + 9}}{x}\) trên khoảng \((0; + \infty )\).
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Tìm giá trị nhỏ nhất của hàm số \(f(x) = \frac{{{x^2} + 9}}{x}\) trên khoảng \((0; + \infty )\).
Quảng cáo
Trả lời:

Đáp số: 6
Xét hàm số \(f(x) = \frac{{{x^2} + 9}}{x}\) với \(x \in (0; + \infty )\).
Ta có: \(f'(x) = \frac{{{x^2} - 9}}{{{x^2}}}\). Khi đó, \(f'(x) = 0 \Leftrightarrow x = 3\) (do \(\left. {x > 0} \right)\).
Ngoài ra \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = + \infty ,\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).
Bảng biến thiên của hàm số như sau:
Căn cứ bảng biến thiên, ta có: \(\mathop {\min }\limits_{(0; + \infty )} f(x) = 6\) tại \(x = 3\) và hàm số \(f(x)\) không có giá trị lớn nhất.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a. S |
b. Đ |
c. Đ |
d. Đ |
a) Khi \(m = 0\) thì giá trị nhỏ nhất của hàm số trên khoảng \(\left( {0; + \infty } \right)\) bằng \(2\).
Thay \(m = 0\)vào \(y = \frac{{{x^2} + mx + 1}}{{x + m}}\), ta có \(y = \frac{{{x^2} + 1}}{x} \Rightarrow y' = \frac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 1 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1 \notin \left( {0; + \infty } \right)\end{array} \right.\).
b) Ta có \(y = \frac{{{x^2} + mx + 1}}{{x + m}} \Rightarrow y' = \frac{{{x^2} + 2mx + {m^2} - 1}}{{{{(x + m)}^2}}}\).
\( + y' = 0\)\( \Leftrightarrow {x^2} + 2mx + {m^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - m - 1;\,(\,x \ne - m)\\x = - m + 1;\,(\,x \ne - m)\end{array} \right.\).
\( \Rightarrow y' = 0\) luôn có 2 nghiệm phân biệt thỏa mãn \(x \ne - m,\,\,\forall m\). Vậy hàm số luôn có 2 cực trị.
c) \( + y' = 0\)\( \Leftrightarrow {x^2} + 2mx + {m^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - m - 1\\x = - m + 1\end{array} \right.\).
Ta có bảng biến thiên:
Từ bảng biến thiên ta có: \(\mathop {max}\limits_{\left( { - \infty ; - m} \right)} y = - 2 - m\,\,;\,\,\,\,\,\mathop {\min }\limits_{\left( { - m; + \infty } \right)} y = 2 - m \Rightarrow \mathop {\min }\limits_{\left( { - m; + \infty } \right)} y - \mathop {{\mathop{\rm m}\nolimits} ax}\limits_{\left( { - \infty ; - m} \right)} y = 4\).
d) Khi \(m = - 3\)thay vào \(y = \frac{{{x^2} + mx + 1}}{{x + m}}\), ta có \(y = \frac{{{x^2} - 3x + 1}}{{x - 3}}\).
+ Hàm số \(y = \frac{{{x^2} - 3x + 1}}{{x - 3}}\) là hàm phân thức hữu tỉ, liên tục trên các khoảng \(\left( { - \infty ;3} \right)\) và \(\left( {3; + \infty } \right)\).
Mặt khác \(\left[ { - 1;2} \right] \subset \left( { - \infty ;3} \right) \Rightarrow \)hàm số liên tục trên đoạn \(\left[ { - 1;2} \right]\).
+ Ta có \(y' = \frac{{{x^2} - 6x + 8}}{{{{(x - 3)}^2}}} > 0\,\,\forall x \in \left( { - 1;2} \right)\) và \(y(2) = 1\).
Vì hàm số tăng trên \(\left( { - 1;2} \right)\) nên hàm số đạt giá trị lớn nhất \(\mathop {max}\limits_{\left[ { - 1;2} \right]} y = y(2) = 1\).
Lời giải
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Dựa vào đồ thị hàm số suy ra
a) \(m = - 4\).
b) \(M = 0\).
c)\(M + m = 0 + ( - 4) = - 4\).
d) Với \(\forall x \in \left[ { - 1\,;\, + \infty } \right)\), ta có: \(f\left( x \right) \le 0 \Rightarrow f\left( x \right) + 4 \le 4\) và \(f\left( x \right) + 4 = 4 \Leftrightarrow f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right.\)
Vậy, giá trị lớn nhất của hàm số \(y = f\left( x \right) + 4\) trên nửa khoảng \(\left[ { - 1\,;\, + \infty } \right)\) là \(4\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.