PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Tìm giá trị nhỏ nhất của hàm số \(f(x) = \frac{{{x^2} + 9}}{x}\) trên khoảng \((0; + \infty )\).
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Tìm giá trị nhỏ nhất của hàm số \(f(x) = \frac{{{x^2} + 9}}{x}\) trên khoảng \((0; + \infty )\).
Quảng cáo
Trả lời:
Đáp số: 6
Xét hàm số \(f(x) = \frac{{{x^2} + 9}}{x}\) với \(x \in (0; + \infty )\).
Ta có: \(f'(x) = \frac{{{x^2} - 9}}{{{x^2}}}\). Khi đó, \(f'(x) = 0 \Leftrightarrow x = 3\) (do \(\left. {x > 0} \right)\).
Ngoài ra \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = + \infty ,\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).
Bảng biến thiên của hàm số như sau:
Căn cứ bảng biến thiên, ta có: \(\mathop {\min }\limits_{(0; + \infty )} f(x) = 6\) tại \(x = 3\) và hàm số \(f(x)\) không có giá trị lớn nhất.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Dựa vào đồ thị hàm số suy ra
a) \(m = - 4\).
b) \(M = 0\).
c)\(M + m = 0 + ( - 4) = - 4\).
d) Với \(\forall x \in \left[ { - 1\,;\, + \infty } \right)\), ta có: \(f\left( x \right) \le 0 \Rightarrow f\left( x \right) + 4 \le 4\) và \(f\left( x \right) + 4 = 4 \Leftrightarrow f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right.\)
Vậy, giá trị lớn nhất của hàm số \(y = f\left( x \right) + 4\) trên nửa khoảng \(\left[ { - 1\,;\, + \infty } \right)\) là \(4\).
Câu 2
Lời giải
Tập xác định \(D = \left[ { - \sqrt 2 ;\sqrt 2 } \right]\).
\(y' = 1 - \frac{x}{{\sqrt {2 - {x^2}} }}\);
Ta có: \(y' = 0\)\( \Leftrightarrow x - \sqrt {2 - {x^2}} = 0\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} = 1\end{array} \right.\)\( \Leftrightarrow x = 1\).
Ta có \(y\left( {\sqrt 2 } \right) = \sqrt 2 \); \(y\left( { - \sqrt 2 } \right) = - \sqrt 2 \); \(y\left( 1 \right) = 2\).
Vậy \(\mathop {\max }\limits_{\left[ { - 2;2} \right]} y = y\left( 1 \right) = 2\); \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} y = y\left( { - \sqrt 2 } \right) = - \sqrt 2 \).
Vậy \(M - m = 2 + \sqrt 2 \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) có đồ thị bên dưới. Gọi \[M,{\rm{ }}m\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \[\left[ {1\,;\,3} \right]\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/13-1759147890.png)