Đồ thị hàm số \(y = \frac{{x + 1}}{{{x^2} + x - 2}}\) có bao nhiêu đường tiệm cận đứng?
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:

Hàm số có tập xác định là \[D = \mathbb{R}\backslash \left\{ { - 2;1} \right\}\].
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x + 1}}{{{x^2} + x - 2}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 1}}{{{x^2} + x - 2}} = - \infty \) nên đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{{x + 1}}{{{x^2} + x - 2}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \frac{{x + 1}}{{{x^2} + x - 2}} = - \infty \) nên đường thẳng \(x = - 2\) là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có \[2\]tiệm cận đứng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đường cong có dạng của đồ thị hàm số bậc \(3\) với hệ số \(a > 0\) và đi qua gốc tọa độ \(O\) nên chỉ có hàm số \(y = {x^3} - 2024x\) thỏa mãn yêu cầu bài toán.
Câu 2
Lời giải
Hàm số đã cho đồng biến trên khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.