Tính được các giá trị lượng giác còn lại của góc \(x\), biết: \(\cos x = \frac{1}{4}\) với \(0 < x < \frac{\pi }{2}\). Khi đó:
a) \(\sin x < 0\)
b) \(\sin x = - \frac{{\sqrt {15} }}{4}\)
c) \(\tan x = \sqrt {15} \)
d) \(\cot x = - \frac{1}{{\sqrt {15} }}\)
Tính được các giá trị lượng giác còn lại của góc \(x\), biết: \(\cos x = \frac{1}{4}\) với \(0 < x < \frac{\pi }{2}\). Khi đó:
a) \(\sin x < 0\)
b) \(\sin x = - \frac{{\sqrt {15} }}{4}\)
c) \(\tan x = \sqrt {15} \)
d) \(\cot x = - \frac{1}{{\sqrt {15} }}\)
Quảng cáo
Trả lời:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Do \(0 < x < \frac{\pi }{2}\) nên \(\sin x > 0\).
Ta có: \({\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x = 1 - \frac{1}{{16}} = \frac{{15}}{{16}}\)
\( \Rightarrow \sin x = \frac{{\sqrt {15} }}{4};\tan x = \frac{{\sin x}}{{\cos x}} = \sqrt {15} ;\cot x = \frac{{\cos x}}{{\sin x}} = \frac{1}{{\sqrt {15} }}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bán kính đường tròn là \(R = \frac{{60}}{2} = 30\;cm\).
a) Ta có: ; suy ra độ dài cung nhỏ \(AB\) là .
b) Ta có: ; suy ra độ dài cung nhỏ \(AC\) là
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) Ta có: \[(OA,OB) = \frac{\pi }{4} + k2\pi (k \in \mathbb{Z})\];
b) Ta thấy \(A,C,E,G\) lần lượt biểu diễn cho các góc lượng giác \(0rad,\frac{\pi }{2}rad,\pi rad,\frac{{3\pi }}{2}rad,2\pi rad\), \(\frac{{5\pi }}{2}{\mathop{\rm rad}\nolimits} ,..\). Tất cả các góc này theo thứ tự chênh lệch nhau \(\frac{\pi }{2}\) rad. Vì vậy công thức duy nhất biểu diễn cho các góc lượng giác ấy là \(k\frac{\pi }{2}(k \in \mathbb{Z})\).

c) Ta thấy hai điểm \(A,E\) lần lượt biểu diễn cho các góc lượng giác Tất cả các góc này theo thứ tự chênh lệch nhau \({180^^\circ }\). Vì vậy công thức duy nhất biểu diễn cho các góc lượng giác ấy là
d) Theo hệ thức Sa-lơ, ta có:
\(\begin{array}{l}(OA,OB) + (OB,OC) = (OA,OC) = \frac{\pi }{2} + k2\pi (k \in \mathbb{Z})\\(OA,OC) + (OC,OH) = (OA,OH) = - \frac{\pi }{4} + k2\pi (k \in \mathbb{Z})\end{array}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
