Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Phương trình nào sau đây là phương trình bậc nhất hai ẩn?
Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Phương trình nào sau đây là phương trình bậc nhất hai ẩn?
Quảng cáo
Trả lời:
Chọn C
Phương trình bậc nhất hai ẩn có dạng tổng quát: \(ax + by = c\;\) (\(a \ne 0\) hoặc \(b \ne 0\)) nên phương trình \(3x + 2y = 6\) là phương trình bậc nhất hai ẩn.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\left\{ \begin{array}{l}x + y = {a^2} + a + 1\\x - y = - {a^2} + a - 1\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + y = {a^2} + a + 1\\2x = 2a\end{array} \right.\) nên \(\left\{ \begin{array}{l}x = a\\y = {a^2} + 1\end{array} \right.\).
Do đó: \(3x + y = {a^2} + 3a + 1 = {\left( {a + \frac{3}{2}} \right)^2} - \frac{5}{4} \ge - \frac{5}{4}\) với mọi \(a \in \mathbb{R}.\)
Vậy giá trị nhỏ nhất của \(3x + y\) bằng \( - \frac{5}{4}\) khi \(a = - \frac{3}{2}\).
Đáp án: −1,5.
Lời giải
Gọi \[x,y\] lần lượt là số dãy và số ghế trong một dãy \[\left( {x \in {\mathbb{N}^*},\,\,y \in {\mathbb{N}^*}} \right).\]
Vì phòng học có tất cả \[200\] ghế nên ta có \[xy = 200\] (1)
Nếu kê thêm \[2\] dãy và mỗi dãy tăng thêm \[1\] ghế thì kê được \[242\] ghế nên ta có phương trình
\[\left( {x + 2} \right)\left( {y + 1} \right) = 242\] hay \[xy + x + 2y + 2 = 242\]
Tức là, \[xy + x + 2y = 240\] (2)
Thế \[xy = 200\] vào phương trình (2), ta được \[200 + x + 2y = 240\] hay \[x + 2y = 40\] (3)
Từ (1), (3), ta có hệ phương trình \[\left\{ \begin{array}{l}xy = 200\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x + 2y = 40\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\end{array} \right.\]
Từ phương trình (3), ta có \[x = 40 - 2y\] (*)
Thế (*) vào phương trình (1), ta được \[\left( {40 - 2y} \right)y = 200\] hay \[2{y^2} - 40y + 200 = 0.\]
Giải phương trình:
\[2{y^2} - 40y + 200 = 0\]
\[{y^2} - 20y + 100 = 0.\]
\[{\left( {y - 10} \right)^2} = 0.\]
\[y - 10 = 0.\]
\[y = 10\] (thỏa mãn điều kiện)
Với \[y = 10\], ta có \[x = 40 - 2y = 40 - 2.10 = 20\] (thỏa mãn điều kiện).
Vậy phòng học ban đầu có \[20\] dãy ghế.
Đáp án: 20.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(a = 3\,;\,\,b = 1\,;\,\,c = 6\) và \(a' = - 2\,;\,\,b' = 1\,;\,\,c' = - 5\).
B. \(a = 1\,;\,\,b = - 3\,;\,\,c = - 6\) và \(a' = 2\,;\,\,b' = 1\,;\,\,c' = 5\).
C. \(a = 1\,;\,\,b = 3\,;\,\,c = 6\) và \(a' = - 2\,;\,\,b' = - 1\,;\,\,c' = - 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.