Câu hỏi:

09/10/2025 31 Lưu

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Phương trình nào sau đây là phương trình bậc nhất hai ẩn?

A. \(2x + 3{y^2} = 0\). 
B. \({x^3} + y = 5\).
C. \(3x + 2y = 6\).
D. \(xy - x = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Phương trình bậc nhất hai ẩn có dạng tổng quát: \(ax + by = c\;\) (\(a \ne 0\) hoặc \(b \ne 0\)) nên phương trình  \(3x + 2y = 6\) là phương trình bậc nhất hai ẩn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[x,y\] lần lượt là số dãy và số ghế trong một dãy \[\left( {x \in {\mathbb{N}^*},\,\,y \in {\mathbb{N}^*}} \right).\]

Vì phòng học có tất cả \[200\] ghế nên ta có \[xy = 200\]            (1)

Nếu kê thêm \[2\] dãy và mỗi dãy tăng thêm \[1\] ghế thì kê được \[242\] ghế nên ta có phương trình

\[\left( {x + 2} \right)\left( {y + 1} \right) = 242\] hay \[xy + x + 2y + 2 = 242\]

Tức là, \[xy + x + 2y = 240\]            (2)

Thế \[xy = 200\] vào phương trình (2), ta được \[200 + x + 2y = 240\] hay \[x + 2y = 40\]       (3)

Từ (1), (3), ta có hệ phương trình \[\left\{ \begin{array}{l}xy = 200\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x + 2y = 40\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\end{array} \right.\]

Từ phương trình (3), ta có \[x = 40 - 2y\]        (*)

Thế (*) vào phương trình (1), ta được \[\left( {40 - 2y} \right)y = 200\] hay \[2{y^2} - 40y + 200 = 0.\]

Giải phương trình:

\[2{y^2} - 40y + 200 = 0\]

\[{y^2} - 20y + 100 = 0.\]

\[{\left( {y - 10} \right)^2} = 0.\]

\[y - 10 = 0.\]

\[y = 10\] (thỏa mãn điều kiện)

Với \[y = 10\], ta có \[x = 40 - 2y = 40 - 2.10 = 20\] (thỏa mãn điều kiện).

Vậy phòng học ban đầu có \[20\] dãy ghế.

Đáp án: 20.

Lời giải

a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).

Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.

b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).

c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} =  - 0,4x + 1,4\).

Do đó \(a - b =  - 0,4 - 1,4 =  - 1,8\).

d) Sai. Ta có \(ab =  - 0,4 \cdot 1,4 =  - 0,56\).

Câu 3

A. \(\left\{ \begin{array}{l}x + y = 3,5\\130x + 50y = 295.\end{array} \right.\)  

                                                                           

B. \(\left\{ \begin{array}{l}x - y = 3,5\\130x + y = 295.\end{array} \right.\)
C. \(\left\{ \begin{array}{l}x + y = 3,5\\x + 50y = 295.\end{array} \right.\)                                              
D. \(\left\{ \begin{array}{l}x + y = 295\\130x + 50y = 3,5.\end{array} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(a = 3\,;\,\,b = 1\,;\,\,c = 6\) và \(a' =  - 2\,;\,\,b' = 1\,;\,\,c' =  - 5\).

B. \(a = 1\,;\,\,b =  - 3\,;\,\,c =  - 6\) và \(a' = 2\,;\,\,b' = 1\,;\,\,c' = 5\).

C. \(a = 1\,;\,\,b = 3\,;\,\,c = 6\) và \(a' =  - 2\,;\,\,b' =  - 1\,;\,\,c' =  - 5\).

D. \(a = 1\,;\,\,b = 3\,;\,\,c = 6\) và \(a' =  - 1\,;\,\,b' =  - 2\,;\,\,c' = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP