Một phòng học có \[200\] ghế được xếp thành từng dãy, số ghế ở mỗi dãy như nhau. Nếu kê thêm \[2\] dãy và mỗi dãy tăng thêm \[1\] ghế thì kê được \[242\] ghế. Hỏi phòng học ban đầu có bao nhiêu dãy ghế?
Quảng cáo
Trả lời:

Gọi \[x,y\] lần lượt là số dãy và số ghế trong một dãy \[\left( {x \in {\mathbb{N}^*},\,\,y \in {\mathbb{N}^*}} \right).\]
Vì phòng học có tất cả \[200\] ghế nên ta có \[xy = 200\] (1)
Nếu kê thêm \[2\] dãy và mỗi dãy tăng thêm \[1\] ghế thì kê được \[242\] ghế nên ta có phương trình
\[\left( {x + 2} \right)\left( {y + 1} \right) = 242\] hay \[xy + x + 2y + 2 = 242\]
Tức là, \[xy + x + 2y = 240\] (2)
Thế \[xy = 200\] vào phương trình (2), ta được \[200 + x + 2y = 240\] hay \[x + 2y = 40\] (3)
Từ (1), (3), ta có hệ phương trình \[\left\{ \begin{array}{l}xy = 200\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x + 2y = 40\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\end{array} \right.\]
Từ phương trình (3), ta có \[x = 40 - 2y\] (*)
Thế (*) vào phương trình (1), ta được \[\left( {40 - 2y} \right)y = 200\] hay \[2{y^2} - 40y + 200 = 0.\]
Giải phương trình:
\[2{y^2} - 40y + 200 = 0\]
\[{y^2} - 20y + 100 = 0.\]
\[{\left( {y - 10} \right)^2} = 0.\]
\[y - 10 = 0.\]
\[y = 10\] (thỏa mãn điều kiện)
Với \[y = 10\], ta có \[x = 40 - 2y = 40 - 2.10 = 20\] (thỏa mãn điều kiện).
Vậy phòng học ban đầu có \[20\] dãy ghế.
Đáp án: 20.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Phương trình bậc nhất hai ẩn có dạng tổng quát: \(ax + by = c\;\) (\(a \ne 0\) hoặc \(b \ne 0\)) nên phương trình \(3x + 2y = 6\) là phương trình bậc nhất hai ẩn.
Lời giải
a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).
Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.
b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).
c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} = - 0,4x + 1,4\).
Do đó \(a - b = - 0,4 - 1,4 = - 1,8\).
d) Sai. Ta có \(ab = - 0,4 \cdot 1,4 = - 0,56\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(a = 3\,;\,\,b = 1\,;\,\,c = 6\) và \(a' = - 2\,;\,\,b' = 1\,;\,\,c' = - 5\).
B. \(a = 1\,;\,\,b = - 3\,;\,\,c = - 6\) và \(a' = 2\,;\,\,b' = 1\,;\,\,c' = 5\).
C. \(a = 1\,;\,\,b = 3\,;\,\,c = 6\) và \(a' = - 2\,;\,\,b' = - 1\,;\,\,c' = - 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.