Cho tam giác \(ABC(AB < AC),AD\) là phân giác trong của góc \(A\). Qua trung điểm \(M\) của cạnh \(BC\), ta kẻ đường thẳng song song với \(AD\), cắt cạnh \(AC\) tại \(E\) và cắt tia \(BA\) tại \(F\). Biết rằng \(AB = 6\) và \(4BD = 3BM\). Tính: \(|\overrightarrow {CM} - \overrightarrow {EM} |?\)
Câu hỏi trong đề: Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) !!
Quảng cáo
Trả lời:

Ta có: \(\overrightarrow {CM} - \overrightarrow {EM} = \overrightarrow {CM} + \overrightarrow {ME} = \overrightarrow {CE} \)
Ta có: \(ME\parallel AD \Rightarrow \frac{{CE}}{{CA}} = \frac{{CM}}{{CD}}\left( 1 \right)\); \(AD\parallel MF \Rightarrow \frac{{BA}}{{BF}} = \frac{{BD}}{{BM}}\left( 2 \right)\)
Nhân theo vế (1), (2) với \(BM = CM\), ta được: \(\frac{{CE}}{{BF}} \cdot \frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}(3)\).
Theo giả thiết, \(AD\) là phân giác của góc \(A\) nên \(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\) (4).
Từ (3) và (4) suy ra \(\frac{{CE}}{{BF}} = 1 \Rightarrow CE = BF\) (5).
Từ (2): \(\frac{{BA}}{{BF}} = \frac{{BD}}{{BM}} = \frac{3}{4} \Rightarrow BF = \frac{4}{3}BA = \frac{4}{3} \cdot 6 = 8\) (6).
Từ (5) và (6) suy ra \(CE = BF = 8\).
Vậy \(|\overrightarrow {CM} - \overrightarrow {EM} | = |\overrightarrow {CE} | = CE = 8\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Chọn các điểm \(A,B\) thỏa mãn \(\overrightarrow {{F_1}} = \overrightarrow {OA} ,\overrightarrow {{F_2}} = \overrightarrow {OB} \) (hình vẽ). Gọi điểm \(C\) là một đỉnh của hình bình hành \(OACB\), khi đó ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OC} \)(quy tắc hình bình hành).
Cường độ tổng hợp hai lực là: \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {OC} } \right| = OC\)
Xét tam giác \(OAB\) có \(OA = OB = 100\) và \(\widehat {AOB} = 60^\circ \) nên tam giác \(OAB\) đều.
Gọi \(I\) là tâm hình bình hành \(OACB\), khi đó \(OI\) cũng là đường cao tam giác đều \(OAB\).
Do đó \(OI = \frac{{100\sqrt 3 }}{2} = 50\sqrt 3 \), suy ra \(OC = 2OI = 100\sqrt 3 \).
Vậy hợp lực của \({\vec F_1},{\vec F_2}\) có độ lớn là \(100\sqrt 3 N\).
Lời giải

Ta có: \(|\overrightarrow {AB} + \overrightarrow {BM} | = |\overrightarrow {AM} | = AM\).
Theo định lí Py-ta-go: \(A{M^2} = A{B^2} + B{M^2} = {\left( {2a} \right)^2} + {a^2} = 5{a^2} \Rightarrow AM = a\sqrt 5 \)
Vậy \(\left| {\overrightarrow {AB} + \overrightarrow {BM} } \right| = AM = a\sqrt 5 \)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.