Câu hỏi:

12/10/2025 47 Lưu

Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.

Cho hai vectơ \(\vec a\)\(\vec b\) khác \(\vec 0\). Xác định góc \(\alpha \) giữa hai vectơ \(\vec a\)\(\vec b\) khi \(\overrightarrow a .\overrightarrow b = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\)

A. \(\alpha = {180^{\rm{o}}}\).                  
B. \(\alpha = {0^{\rm{o}}}\).          
C. \(\alpha = {90^{\rm{o}}}\).        
D. \(\alpha = {45^{\rm{o}}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.cos\left( {\overrightarrow a ,\overrightarrow b } \right)\).

Mà theo giả thiết \(\overrightarrow a .\overrightarrow b  =  - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\), suy ra cosa,b=1a,b=1800

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Sai

c) Đúng

d) Sai

 

Ta có: \(\overrightarrow {CM}  = \overrightarrow {BM}  - \overrightarrow {BC}  = \frac{1}{2}\overrightarrow {BA}  - \overrightarrow {BC} \).

Vì \(G\) là trọng tâm của tam giác \(ACM\) nên

\(3\overrightarrow {BG}  = \overrightarrow {BA}  + \overrightarrow {BM}  + \overrightarrow {BC}  = \overrightarrow {BA}  + \frac{1}{2}\overrightarrow {BA}  + \overrightarrow {BC}  = \frac{3}{2}\overrightarrow {BA}  + \overrightarrow {BC}  \Rightarrow \overrightarrow {BG}  = \frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} .\)

Vì \(ABCD\) là hình chữ nhật nên \(BC = AD = 3a,\overrightarrow {BC}  \cdot \overrightarrow {BA}  = 0\).

Ta có: \(\overrightarrow {BG}  \cdot \overrightarrow {CM}  = \left( {\frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} } \right) \cdot \left( {\frac{1}{2}\overrightarrow {BA}  - \overrightarrow {BC} } \right) = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA}  \cdot \overrightarrow {BC}  - \frac{1}{3}{\overrightarrow {BC} ^2}\)

\( = \frac{1}{4}{(4a)^2} - \frac{1}{3} \cdot 4a \cdot 3a - \frac{1}{3}{(3a)^2} =  - 3{a^2}.\)

Lời giải

Tam giác \(AMB\) có \(AM = BM = AB\) nên là tam giác đều. Suy ra MAB^=60°

BAAM=ABAM=|AB||AM|cos(AB,AM)=aacos60°=a22

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP