Cho hai vectơ . Khi đó:
a) \(\vec a \cdot \vec b = - 6\sqrt 3 \)
b) \((\vec a + \vec b) \cdot (\vec a - \vec b) = 7.\)
c) \((3\vec a + \vec b) \cdot (\vec a - 2\vec b) = - 5 + 30\sqrt 3 \)
d) \((3\vec a + \vec b) \cdot (\vec a - 2\vec b) = 5 + 30\sqrt 3 \)
Cho hai vectơ . Khi đó:
a) \(\vec a \cdot \vec b = - 6\sqrt 3 \)
b) \((\vec a + \vec b) \cdot (\vec a - \vec b) = 7.\)
c) \((3\vec a + \vec b) \cdot (\vec a - 2\vec b) = - 5 + 30\sqrt 3 \)
d) \((3\vec a + \vec b) \cdot (\vec a - 2\vec b) = 5 + 30\sqrt 3 \)
Quảng cáo
Trả lời:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Ta có:
\(\begin{array}{l}(\vec a + \vec b) \cdot (\vec a - \vec b) = {{\vec a}^2} - {{\vec b}^2} = |\vec a{|^2} - |\vec b{|^2} = {3^2} - {4^2} = - 7.\\\begin{array}{*{20}{l}}{(3\vec a + \vec b) \cdot (\vec a - 2\vec b)}&{ = 3{{\vec a}^2} - 5\vec a \cdot \vec b - 2{{\vec b}^2} = 3|\vec a{|^2} - 5\vec a \cdot \vec b - 2|\vec b{|^2}}\\{}&{ = 3 \cdot {3^2} - 5( - 6\sqrt 3 ) - 2 \cdot {4^2} = - 5 + 30\sqrt 3 .}\end{array}\end{array}\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Ta có: \(\overrightarrow {CM} = \overrightarrow {BM} - \overrightarrow {BC} = \frac{1}{2}\overrightarrow {BA} - \overrightarrow {BC} \).
Vì \(G\) là trọng tâm của tam giác \(ACM\) nên
\(3\overrightarrow {BG} = \overrightarrow {BA} + \overrightarrow {BM} + \overrightarrow {BC} = \overrightarrow {BA} + \frac{1}{2}\overrightarrow {BA} + \overrightarrow {BC} = \frac{3}{2}\overrightarrow {BA} + \overrightarrow {BC} \Rightarrow \overrightarrow {BG} = \frac{1}{2}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} .\)
Vì \(ABCD\) là hình chữ nhật nên \(BC = AD = 3a,\overrightarrow {BC} \cdot \overrightarrow {BA} = 0\).
Ta có: \(\overrightarrow {BG} \cdot \overrightarrow {CM} = \left( {\frac{1}{2}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} } \right) \cdot \left( {\frac{1}{2}\overrightarrow {BA} - \overrightarrow {BC} } \right) = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA} \cdot \overrightarrow {BC} - \frac{1}{3}{\overrightarrow {BC} ^2}\)
\( = \frac{1}{4}{(4a)^2} - \frac{1}{3} \cdot 4a \cdot 3a - \frac{1}{3}{(3a)^2} = - 3{a^2}.\)
Lời giải
Ta có:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
