Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình vuông \(ABCD\) cạnh \(a\). Gọi \(M\) là trung điểm \(AB,N\) là điểm đối xứng với \(C\) qua \(D\). Khi đó:
a) \(M{D^2} = A{D^2} + A{M^2}\)
b) \(MN = \frac{{a\sqrt {13} }}{2}.\)
c) \(MD = \frac{{a\sqrt 3 }}{2}\)
d) \(\left| {\overrightarrow {MN} } \right| = \frac{{a\sqrt 3 }}{{12}}\)
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình vuông \(ABCD\) cạnh \(a\). Gọi \(M\) là trung điểm \(AB,N\) là điểm đối xứng với \(C\) qua \(D\). Khi đó:
a) \(M{D^2} = A{D^2} + A{M^2}\)
b) \(MN = \frac{{a\sqrt {13} }}{2}.\)
c) \(MD = \frac{{a\sqrt 3 }}{2}\)
d) \(\left| {\overrightarrow {MN} } \right| = \frac{{a\sqrt 3 }}{{12}}\)
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương IV (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Xét \(\Delta MAD\) vuông tại \(A\), ta có:
\(\begin{array}{*{20}{l}}{M{D^2}}&{ = A{D^2} + A{M^2}}\\{}&{ = {a^2} + {{\left( {\frac{a}{2}} \right)}^2} = \frac{{5{a^2}}}{4} \Rightarrow MD = \frac{{a\sqrt 5 }}{2}.}\end{array}\)
Qua \(N\) kẻ đường thẳng song song với \(AD\) cắt \(AB\) tại \(P\).
Khi đó tứ giác \(ADNP\) là hình vuông và \(PM = PA + AM = a + \frac{a}{2} = \frac{{3a}}{2}\).
Xét tam giác \(NPM\) vuông tại \(P\), ta có: \(M{N^2} = P{M^2} + P{N^2} = {\left( {\frac{{3a}}{2}} \right)^2} + {a^2} = \frac{{13{a^2}}}{4} \Rightarrow MN = \frac{{a\sqrt {13} }}{2}.\)
Vậy các độ dài vectơ cần tìm là: \(|\overrightarrow {MD} | = MD = \frac{{a\sqrt 5 }}{2},|\overrightarrow {MN} | = MN = \frac{{a\sqrt {13} }}{2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có \(\overrightarrow {NC} + \overrightarrow {ND} - \overrightarrow {NA} = \overrightarrow {AB} + \overrightarrow {AD} - \overrightarrow {AC} \)
\( \Leftrightarrow \left( {\overrightarrow {NC} - \overrightarrow {NA} } \right) + \overrightarrow {ND} = \left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) - \overrightarrow {AC} \)
\( \Leftrightarrow \overrightarrow {AC} + \overrightarrow {ND} = \overrightarrow {AC} - \overrightarrow {AC} \Leftrightarrow \overrightarrow {AC} = \overrightarrow {DN} \)
\( \Rightarrow ACND\) là hình bình hành \( \Rightarrow C\) là trung điểm cạnh BN.
Lời giải
Gọi \(D\) là điểm sao cho tứ giác \(ABDC\) là hình bình hành.
Khi đó theo quy tắc hình bình hành ta có \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \)
Vì tam giác \(ABC\) vuông ở \(A\) nên tứ giác \(ABDC\) là hình chữ nhật
suy ra \(AD = BC = a\sqrt 5 \)
Vậy \(|\overrightarrow {AB} + \overrightarrow {AC} | = |\overrightarrow {AD} | = AD = a\sqrt 5 \)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.