Câu hỏi:

12/10/2025 367 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình vuông \(ABCD\) cạnh \(a\). Gọi \(M\) là trung điểm \(AB,N\) là điểm đối xứng với \(C\) qua \(D\). Khi đó:

a) \(M{D^2} = A{D^2} + A{M^2}\)

b) \(MN = \frac{{a\sqrt {13} }}{2}.\)

c) \(MD = \frac{{a\sqrt 3 }}{2}\)

d) \(\left| {\overrightarrow {MN} } \right| = \frac{{a\sqrt 3 }}{{12}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Sai

 

Xét \(\Delta MAD\) vuông tại \(A\), ta có:

\(\begin{array}{*{20}{l}}{M{D^2}}&{ = A{D^2} + A{M^2}}\\{}&{ = {a^2} + {{\left( {\frac{a}{2}} \right)}^2} = \frac{{5{a^2}}}{4} \Rightarrow MD = \frac{{a\sqrt 5 }}{2}.}\end{array}\)

Qua \(N\) kẻ đường thẳng song song với \(AD\) cắt \(AB\) tại \(P\).

Cho hình vuông \(ABCD\) cạnh \(a\). Gọi \(M (ảnh 1)

Khi đó tứ giác \(ADNP\) là hình vuông và \(PM = PA + AM = a + \frac{a}{2} = \frac{{3a}}{2}\).

Xét tam giác \(NPM\) vuông tại \(P\), ta có: \(M{N^2} = P{M^2} + P{N^2} = {\left( {\frac{{3a}}{2}} \right)^2} + {a^2} = \frac{{13{a^2}}}{4} \Rightarrow MN = \frac{{a\sqrt {13} }}{2}.\)

Vậy các độ dài vectơ cần tìm là: \(|\overrightarrow {MD} | = MD = \frac{{a\sqrt 5 }}{2},|\overrightarrow {MN} | = MN = \frac{{a\sqrt {13} }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1. \(JA = \frac{2}{3}JC \Leftrightarrow 3JA = 2JC\) mà \(\overrightarrow {JA} \) và \(\overrightarrow {JC} \) ngược hướng

\( \Leftrightarrow 3\overrightarrow {JA}  =  - 2\overrightarrow {JC}  \Leftrightarrow 3(\overrightarrow {BA}  - \overrightarrow {BJ} ) + 2(\overrightarrow {BC}  - \overrightarrow {BJ} ) = \vec 0\)

\( \Leftrightarrow 5\overrightarrow {BJ}  = 3\overrightarrow {BA}  + 2\overrightarrow {BC}  \Leftrightarrow \overrightarrow {BJ}  = \frac{3}{5}\overrightarrow {BA}  + \frac{2}{5}\overrightarrow {BC} \).

Cách 2: J thuộc cạnh AC và \(JA = \frac{2}{3}JC \Rightarrow \frac{{AJ}}{{AC}} = \frac{2}{5} \Leftrightarrow AJ = \frac{2}{5}AC\)

\(\overrightarrow {BJ}  = \overrightarrow {BA}  + \overrightarrow {AJ}  =  - \overrightarrow {AB}  + \frac{2}{5}\overrightarrow {AC}  =  - \overrightarrow {AB}  + \frac{2}{5}(\overrightarrow {BC}  - \overrightarrow {BA} ) = \frac{3}{5}\overrightarrow {BA}  + \frac{2}{5}\overrightarrow {BC} \)

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

 

Ta có \({C^\prime }\) là trung điểm của \(AB\) và \({A^\prime }{B^\prime }\) là đường trung bình của tam giác ứng với cạnh đáy \(AB\) nên: \(B{C^\prime } = {C^\prime }A = {A^\prime }{B^\prime } = \frac{{AB}}{2}{\rm{. }}\)

Mặt khác, ba vectơ \(\overrightarrow {B{C^\prime }} ,\overrightarrow {{C^\prime }A} ,\overrightarrow {{A^\prime }{B^\prime }} \) cùng hướng. Do đó \(\overrightarrow {B{C^\prime }}  = \overrightarrow {{C^\prime }A}  = \overrightarrow {{A^\prime }{B^\prime }} \).

Ta xác định được: \(\overrightarrow {{B^\prime }{C^\prime }}  = \overrightarrow {C{A^\prime }}  = \overrightarrow {{A^\prime }B} ,\overrightarrow {{C^\prime }{A^\prime }}  = \overrightarrow {A{B^\prime }}  = \overrightarrow {{B^\prime }C} \).

Câu 3

A. Điểm N là trung điểm cạnh AB             
B. Điểm C là trung điểm cạnh BN
C. Điểm C là trung điểm cạnh AM             
D. Điểm B là trung điểm cạnh NC

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {AB} + \overrightarrow {DF} + \overrightarrow {BD} + \overrightarrow {FA} = \overrightarrow 0 \)   
B. \(\overrightarrow {BE} - \overrightarrow {CE} + \overrightarrow {CF} - \overrightarrow {BF} = \overrightarrow 0 \)
C. \(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \)                                     
D. \(\overrightarrow {FD} + \overrightarrow {BE} + \overrightarrow {AC} = \overrightarrow {BD} + \overrightarrow {AE} + \overrightarrow {CF} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP