Câu hỏi:

12/10/2025 31 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình vuông \(ABCD\) cạnh \(a\). Gọi \(M\) là trung điểm \(AB,N\) là điểm đối xứng với \(C\) qua \(D\). Khi đó:

a) \(M{D^2} = A{D^2} + A{M^2}\)

b) \(MN = \frac{{a\sqrt {13} }}{2}.\)

c) \(MD = \frac{{a\sqrt 3 }}{2}\)

d) \(\left| {\overrightarrow {MN} } \right| = \frac{{a\sqrt 3 }}{{12}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Sai

 

Xét \(\Delta MAD\) vuông tại \(A\), ta có:

\(\begin{array}{*{20}{l}}{M{D^2}}&{ = A{D^2} + A{M^2}}\\{}&{ = {a^2} + {{\left( {\frac{a}{2}} \right)}^2} = \frac{{5{a^2}}}{4} \Rightarrow MD = \frac{{a\sqrt 5 }}{2}.}\end{array}\)

Qua \(N\) kẻ đường thẳng song song với \(AD\) cắt \(AB\) tại \(P\).

Cho hình vuông \(ABCD\) cạnh \(a\). Gọi \(M (ảnh 1)

Khi đó tứ giác \(ADNP\) là hình vuông và \(PM = PA + AM = a + \frac{a}{2} = \frac{{3a}}{2}\).

Xét tam giác \(NPM\) vuông tại \(P\), ta có: \(M{N^2} = P{M^2} + P{N^2} = {\left( {\frac{{3a}}{2}} \right)^2} + {a^2} = \frac{{13{a^2}}}{4} \Rightarrow MN = \frac{{a\sqrt {13} }}{2}.\)

Vậy các độ dài vectơ cần tìm là: \(|\overrightarrow {MD} | = MD = \frac{{a\sqrt 5 }}{2},|\overrightarrow {MN} | = MN = \frac{{a\sqrt {13} }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Điểm N là trung điểm cạnh AB             
B. Điểm C là trung điểm cạnh BN
C. Điểm C là trung điểm cạnh AM             
D. Điểm B là trung điểm cạnh NC

Lời giải

Chọn B

Ta có \(\overrightarrow {NC}  + \overrightarrow {ND}  - \overrightarrow {NA}  = \overrightarrow {AB}  + \overrightarrow {AD}  - \overrightarrow {AC} \)

\( \Leftrightarrow \left( {\overrightarrow {NC}  - \overrightarrow {NA} } \right) + \overrightarrow {ND}  = \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) - \overrightarrow {AC} \)

\( \Leftrightarrow \overrightarrow {AC}  + \overrightarrow {ND}  = \overrightarrow {AC}  - \overrightarrow {AC}  \Leftrightarrow \overrightarrow {AC}  = \overrightarrow {DN} \)

\( \Rightarrow ACND\) là hình bình hành \( \Rightarrow C\) là trung điểm cạnh BN.

Lời giải

Cho tam giác \(ABC\) vuông tại \(A\) có \(\widehat {AB (ảnh 1)

Gọi \(D\) là điểm sao cho tứ giác \(ABDC\) là hình bình hành.

Khi đó theo quy tắc hình bình hành ta có \(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD} \)

Vì tam giác \(ABC\) vuông ở \(A\) nên tứ giác \(ABDC\) là hình chữ nhật

suy ra \(AD = BC = a\sqrt 5 \)

Vậy \(|\overrightarrow {AB}  + \overrightarrow {AC} | = |\overrightarrow {AD} | = AD = a\sqrt 5 \)

Câu 3

A. \(\overrightarrow {BD} = \overrightarrow {CM} \).                                                                              
B. \(\overrightarrow {AM} = \overrightarrow {ED} \).
C. \(M\) là trung điểm \(BC\).                      
D. \(\overrightarrow {EM} = \overrightarrow {BD} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {HA} = \overrightarrow {CD} \)\(\overrightarrow {AD} = \overrightarrow {CH} \).                                        
B. \(\overrightarrow {HA} = \overrightarrow {CD} \)\(\overrightarrow {AD} = \overrightarrow {HC} \).
C. \[\overrightarrow {HA} = \overrightarrow {CD} \]\[\overrightarrow {AC} = \overrightarrow {CH} \].                                        
D. \(\overrightarrow {HA} = \overrightarrow {CD} \)\(\overrightarrow {AD} = \overrightarrow {HC} \)\(\overrightarrow {OB} = \overrightarrow {OD} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(M\) là trung điểm \(AB\).                     
B. \(M\) là trung điểm \(BC\).
C. \(D\) là trung điểm \(BM\).                     
D. \(M\)là trung điểm \(DC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP