Câu hỏi:

20/10/2025 16 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho cấp số nhân \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 5{u_n}\end{array} \right.\left( {\forall n \in \mathbb{N}*} \right)\).

a) Số hạng đầu và công bội của cấp số nhân là \({u_1} = 3;q = 5\).

b) Số hạng thứ 7 của cấp số nhân là \({u_7} = 46857\).

c) \(29296875\) là số hạng thứ 11 của cấp số nhân.

d) \(M = {u_4} + {u_5} + {u_6} + {u_7} + {u_8} + {u_9} = 1464750\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) Đ, d) Đ

a) Ta có \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 5{u_n}\end{array} \right.\left( {\forall n \in \mathbb{N}*} \right)\). Khi đó \(\left( {{u_n}} \right)\) là cấp số nhân có số hạng đầu là \({u_1} = 3\); công bội \(q = 5\).

b) Số hạng thứ 7 của cấp số nhân là \({u_7} = {u_1}.{q^6} = {3.5^6} = 46875\).

c) \({u_n} = 29296875\)\( \Leftrightarrow {u_1}.{q^{n - 1}} = 29296875\)\( \Leftrightarrow {3.5^{n - 1}} = 29296875\)\( \Leftrightarrow {5^{n - 1}} = 9765625\)

\( \Leftrightarrow {5^{n - 1}} = {5^{10}}\)\( \Leftrightarrow n = 11\).

d) Có \(M = {u_4} + {u_5} + {u_6} + {u_7} + {u_8} + {u_9} = {S_9} - {S_3}\)

\( = {u_1}.\frac{{1 - {q^9}}}{{1 - q}} - {u_1}.\frac{{1 - {q^3}}}{{1 - q}}\)\( = 3.\frac{{1 - {5^9}}}{{1 - 5}} - 3.\frac{{1 - {5^3}}}{{1 - 5}} = 1464750\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 17

Số tiền ở mỗi tuần lập thành một cấp số cộng với số hạng đầu \({u_1} = 12\) và công sai \(d = 3\).

Gọi \(n\) là số các số hạng đầu của cấp số cộng cần lấy tổng.

Khi đó, tổng số tiền tiết kiệm của Nam là \({S_n} = \frac{{\left[ {2.12 + \left( {n - 1} \right).3} \right].n}}{2}\).

Theo yêu cầu bài toán:

\({S_n} \ge 567\)\( \Leftrightarrow \frac{{\left[ {24 + \left( {n - 1} \right).3} \right].n}}{2} \ge 567\)\( \Leftrightarrow 3{n^2} + 21n - 1134 \ge 0\)\( \Leftrightarrow \left[ \begin{array}{l}n \le - 23,25\\n \ge 16,25\end{array} \right.\).

Vậy tối thiểu vào tuần thứ 17 Nam đủ tiền mua một cây guitar.

Lời giải

Trả lời: 2

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). (ảnh 1)

Trong mặt phẳng \(\left( {ABCD} \right)\):

Gọi \(AG \cap DF = \left\{ L \right\}\)\( \Rightarrow L\) là trung điểm của \(AG\).

Trong mặt phẳng \(\left( {SAG} \right)\): Gọi \(SL \cap GE = \left\{ P \right\}\).

Suy ra \(\left\{ \begin{array}{l}P \in EG\\P \in SL,SL \subset \left( {SDF} \right)\end{array} \right.\).

Khi đó \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\).

Mặt khác \(P\) là trọng tâm tam giác \(SAG\).

Suy ra \(\frac{{GP}}{{PE}} = 2\).

Câu 4

A. \({u_1} = - 5\).   
B. \({u_2} = - 10\).     
C. \({u_3} = - 15\).                                     
D. \({u_4} = 20\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - \infty ;0} \right)\).             
B. \(\left[ { - 1;1} \right]\).                      
C. \(\left( { - 1;1} \right)\).                      
D. \(\mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP