Gia đình An dự định kéo đường dây điện thành một hình tròn ngoại tiếp sân chơi hình tam giác có độ dài các cạnh là 20 m, 28 m, 32 m. Độ dài đường dây điện ít nhất nhà An cần dùng là bao nhiêu mét?
Gia đình An dự định kéo đường dây điện thành một hình tròn ngoại tiếp sân chơi hình tam giác có độ dài các cạnh là 20 m, 28 m, 32 m. Độ dài đường dây điện ít nhất nhà An cần dùng là bao nhiêu mét?
Quảng cáo
Trả lời:

Có chu vi của tam giác là 20 + 28 + 32 = 80.
Suy ra nửa chu vi tam giác là p = 40.
Diện tích tam giác ABC có \(S = \sqrt {40\left( {40 - 20} \right)\left( {40 - 28} \right)\left( {40 - 32} \right)} = 160\sqrt 3 \).
Lại có diện tích tam giác là \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{20.28.32}}{{4.160\sqrt 3 }} = \frac{{28\sqrt 3 }}{3}\).
Chu vi hình tròn ngoại tiếp hình tam giác là \(2\pi R = \frac{{2\pi .28\sqrt 3 }}{3} \approx 102\) m.
Vậy độ dài đường dây điện ít nhất nhà An cần dùng là 102 m.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi N là trung điểm của BC.
Ta có \(\overrightarrow {GM} = \frac{1}{2}\left( {\overrightarrow {GA} + \overrightarrow {GD} } \right)\)\( = \frac{1}{2}\overrightarrow {GA} + \frac{1}{2}\overrightarrow {GD} \)\( = - \frac{1}{2}.\frac{2}{3}\overrightarrow {AN} + \frac{1}{2}.\frac{2}{3}\overrightarrow {BD} \)\( = - \frac{1}{3}.\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) + \frac{1}{3}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right)\)
\( = - \frac{1}{6}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AC} + \frac{1}{3}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} \)\( = \frac{1}{6}\overrightarrow {BA} - \frac{1}{6}\left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \frac{1}{3}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} \)\( = \frac{1}{6}\overrightarrow {BA} + \frac{1}{6}\overrightarrow {BA} - \frac{1}{6}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} \)
\( = \frac{2}{3}\overrightarrow {BA} + \frac{1}{6}\overrightarrow {BC} \).
Suy ra \(m = 2;n = 1\). Do đó \(m + n = 3\).
Trả lời: 3.
Lời giải
Độ cao của quả bóng tính theo thời gian được xác định bởi hàm số \(h\left( t \right) = a{t^2} + bt + c\)(m), \(t \ge 0\).
Với các thông số cho bởi bảng trên ta có:
\(\left\{ \begin{array}{l}c = 0\\\frac{1}{4}a + \frac{1}{2}b + c = 28\\a + b + c = 48\\4a + 2b + c = 64\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 16\\b = 64\\c = 0\end{array} \right.\)\( \Rightarrow h\left( t \right) = - 16{t^2} + 64t\). Do đó \(h\left( 3 \right) = 48\).
Vậy độ cao quả bóng đạt được tại thời điểm 3 giây là 48 m.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho số tự nhiên \(n\). Xét mệnh đề: “Nếu số tự nhiên \(n\) có chữ số tận cùng bằng 4 thì \(n\) chia hết cho 2”. Mệnh đề đảo của mệnh đề đó là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.