Cho hai biểu thức:
\(M = \sqrt[3]{{{{\left( {17\sqrt 5 + 38} \right)}^3}}} - \sqrt[3]{{{{\left( {17\sqrt 5 - 38} \right)}^3}}}\) và \(N = \sqrt[3]{{{{\left( {17\sqrt 5 - 38} \right)}^3}}} - \sqrt[3]{{{{\left( {17\sqrt 5 + 38} \right)}^3}}}\).
Khẳng định đúng trong các khẳng định sau là
Cho hai biểu thức:
\(M = \sqrt[3]{{{{\left( {17\sqrt 5 + 38} \right)}^3}}} - \sqrt[3]{{{{\left( {17\sqrt 5 - 38} \right)}^3}}}\) và \(N = \sqrt[3]{{{{\left( {17\sqrt 5 - 38} \right)}^3}}} - \sqrt[3]{{{{\left( {17\sqrt 5 + 38} \right)}^3}}}\).
Khẳng định đúng trong các khẳng định sau là
A. \(M > N\).
B. \(M < N\).
Quảng cáo
Trả lời:
Chọn A
Ta có \(M = \sqrt[3]{{{{\left( {17\sqrt 5 + 38} \right)}^3}}} - \sqrt[3]{{{{\left( {17\sqrt 5 - 38} \right)}^3}}}\)
\( = \left( {17\sqrt 5 + 38} \right) - \left( {17\sqrt 5 - 38} \right)\)
\( = 17\sqrt 5 + 38 - 17\sqrt 5 + 38 = 76\).
\(N = \sqrt[3]{{{{\left( {17\sqrt 5 - 38} \right)}^3}}} - \sqrt[3]{{{{\left( {17\sqrt 5 + 38} \right)}^3}}}\)
\( = \left( {17\sqrt 5 - 38} \right) - \left( {17\sqrt 5 + 38} \right)\)
\( = 17\sqrt 5 - 38 - 17\sqrt 5 - 38 = --76\).
Vậy \(M > N\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Do \(12 < 15\) nên \(\sqrt[3]{{12}} < \sqrt[3]{{15}}\) hay \(A < B\).
Lời giải
Thay \(s = 220\,;\,\,g = 9,81\) vào công thức \(s = \sqrt {dg} ,\) ta được:
\(\sqrt {9,81 \cdot d} = 220\)
\(9,81d = {220^2}\)
\[d = \frac{{{{220}^2}}}{{9,81}} \approx 4934\;\,({\rm{m)}}\]
Vậy độ sâu của đại dương nơi xuất phát con sóng thần này là \[4934{\rm{ m}}.\]
Đáp án: 4934.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
