B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho tam giác ABC biết \(AB = 8;AC = 5;\widehat A = 60^\circ \).
a) \(B{C^2} = A{B^2} + A{C^2} + 2AB.AC.\cos A\).
b) Diện tích tam giác ABC bằng \(10\sqrt 3 \).
c) Bán kính đường tròn ngoại tiếp tam giác \(ABC\) bằng \(4\sqrt 3 \).
d) Điểm M thuộc cạnh BC sao cho \(BM = 4\). Khi đó \(AM = \frac{{4\sqrt {91} }}{7}\).
B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho tam giác ABC biết \(AB = 8;AC = 5;\widehat A = 60^\circ \).
a) \(B{C^2} = A{B^2} + A{C^2} + 2AB.AC.\cos A\).
b) Diện tích tam giác ABC bằng \(10\sqrt 3 \).
c) Bán kính đường tròn ngoại tiếp tam giác \(ABC\) bằng \(4\sqrt 3 \).
d) Điểm M thuộc cạnh BC sao cho \(BM = 4\). Khi đó \(AM = \frac{{4\sqrt {91} }}{7}\).
Quảng cáo
Trả lời:
a) Có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\).
b) Diện tích tam giác ABC là \[{S_{ABC}} = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.8.5.\frac{{\sqrt 3 }}{2} = 10\sqrt 3 \].
c) Ta có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)\( = {8^2} + {5^2} - 2.8.5.\cos 60^\circ = 49 \Rightarrow BC = 7\).
Áp dụng định lí sin ta có \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{7}{{\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).
d) Ta có \(\cos B = \frac{{{7^2} + {8^2} - {5^2}}}{{2.7.8}} = \frac{{11}}{{14}}\).
Áp dụng định lí côsin cho tam giác ABM ta có \(A{M^2} = A{B^2} + B{M^2} - 2AB.BM.\cos B = \frac{{208}}{7} \Rightarrow AM = \frac{{4\sqrt {91} }}{7}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi hàm số bậc hai biểu thị độ cao h (m) theo thời gian t (s) là \(h = f\left( t \right) = a{t^2} + bt + c\left( {a < 0} \right)\).
Theo giả thiết, quả bóng được đá lên từ mặt đất, nghĩa là \(f\left( 0 \right) = c = 0\).
Do đó \(f\left( t \right) = a{t^2} + bt\).
Sau 2 giây quả bóng lên đến vị trí cao nhất là 8 m nên \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\f\left( 2 \right) = 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\4a + 2b = 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\ - 4a = 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\b = 8\end{array} \right.\).
Vậy \(f\left( t \right) = - 2{t^2} + 8t\).
Sau 3 giây quả bóng cách mặt đất một khoảng là \(h = f\left( 3 \right) = 6\) m.
Lời giải
Gọi \(x;y\)(chiếc) là số lượng bánh nướng, bánh dẻo mà xí nghiệp cần sản xuất (\(x,y \in \mathbb{N}\)).
Khối lượng bột mỳ cần dùng là \(0,12x + 0,16y\) (kg).
Khối lượng đường cần dùng là \(0,06x + 0,04y\) (kg).
Theo đề ta có hệ \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\y \le 3x\\3x + 4y \le 15000\\3x + 2y \le 12000\end{array} \right.\).
Số tiền lãi thu được là \(T = 8x + 6y\) (nghìn đồng).
Bài toán trở thành tìm giá trị lớn nhất của \(T = 8x + 6y\) trên miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\y \le 3x\\3x + 4y \le 15000\\3x + 2y \le 12000\end{array} \right.\).
Miền nghiệm của hệ bất phương trình là miền tứ giác OABC kể cả cạnh (phần không gạch) với \(O\left( {0;0} \right),A\left( {4000;0} \right),B\left( {3000;1500} \right),C\left( {1000;3000} \right)\).

Với \(O\left( {0;0} \right)\) thì \(T = 0\).
Với \(A\left( {4000;0} \right)\) thì \(T = 32000\).
Với \(B\left( {3000;1500} \right)\) thì \(T = 33000\).
Với \(O\left( {1000;3000} \right)\) thì \(T = 26000\).
Do đó để đạt được tiền lãi cao nhất thì xí nghiệp nên sản xuất 3000 chiếc bánh nướng và 1500 chiếc bánh dẻo.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

