Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: |- 5x| = - 5x khi -5x ≥ 0 hay x ≤ 0

               | - 5x| = 5x khi – 5x < 0 hay x > 0

Vậy để giải phương trình đã cho ta quy về giải hai phương trình:

+) Phương trình: - 5x = 2x + 21 với điều kiện x ≥ 0

⇔ - 7x = 21 ⇔ x = - 3 ( thỏa mãn điều kiện x ≤ 0 )

+) Phương trình: 5x = 2x + 21 với điều kiện x> 0

⇔ 3x = 21

⇔ x = 7 (thỏa mãn điều kiện x > 0)

Vậy tập nghiệm của bất phương trình |-5x|= 2x + 21 là S = {-3; 7}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+) Ta có: | x+ 5| = x + 5 khi x+ 5 ≥ 0 hay x ≥ -5

               | x+ 5| = - (x + 5) khi x+ 5 < 0 hay x < - 5

Vậy để giải phương trình đã cho ta quy về giải hai phương trình:

+) Phương trình: x + 5 = 3x + 1 với điều kiện x ≥ -5

Ta có: x + 5 = 3x + 1

⇔ - 2x = - 4 ⇔ x = 2 (thỏa mãn điều kiện x ≥ -5)

+)Phương trình: - (x + 5) = 3x + 1 với điều kiện x < -5

Ta có: -x - 5 = 3x + 1 ⇔ - 4x = 6

⇔ x = -3/2 (không thỏa mãn điều kiện x < -5)

Vậy tập nghiệm của bất phương trình |x + 5| = 3x + 1 là S = {2}

Lời giải

|x – 7| = 2x + 3 (1)

Ta có: |x – 7| = x – 7 khi x – 7 ≥ 0 hay x ≥ 7.

|x – 7| = -(x – 7) = 7 – x khi x – 7 < 0 hay x < 7.

Vậy phương trình (1) tương đương với:

+ x – 7 = 2x + 3 khi x ≥ 7

x – 7 = 2x + 3 ⇔ x = -10.

Giá trị x = -10 không thỏa mãn điều kiện x ≥ 7 nên không phải nghiệm của (1).

+ 7 – x = 2x + 3 khi x < 7.

7 – x = 2x + 3 ⇔ 3x = 4 ⇔ x = 4/3

Giá trị x = 4/3 thỏa mãn điều kiện x < 7 nên là nghiệm của (1)

Vậy phương trình (1) có nghiệm x = 4/3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay