Câu hỏi:

31/10/2025 8 Lưu

Một người dùng một lực \(\vec F\) có độ lớn \(90\;{\rm{N}}\) làm một vật dịch chuyển một đoạn \(100\;{\rm{m}}\). Biết lực \(\vec F\) hợp với hướng dịch chuyển một góc \(60^\circ \). Công sinh ra bởi lực \(\vec F\) bằng bao nhiêu Jun.
Một người dùng một lực vec F có độ lớn 90N làm một vật dịch chuyển một đoạn 100 m. Biết lực vec F hợp với hướng dịch chuyển một góc 60 độ. Công sinh ra bởi lực vec F bằng bao nhiêu Jun. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 4500

Đặt \(OM = s\) là đoạn đường mà vật di chuyển được với \(O\) là điểm đặt vật ban đầu. Công sinh \(ADBM\)\(A = \vec F \cdot \overrightarrow {OM}  = |\vec F| \cdot |\overrightarrow {OM} | \cdot \cos (\vec F,\overrightarrow {OM} ) = 90 \cdot 100 \cdot \cos 60^\circ  = 4500\;J{\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 10

Miền nghiệm của hệ bất phương trình (I) là miền tam giác \(ABC\) với \(A\left( {4;1} \right),B\left( {8;3} \right),C\left( {2;3} \right)\).

Có bao nhiêu giá trị nguyên của tham số m trong { - 20;20} để bất phương trình 2x - 5y + m >= 0 nghiệm đúng với mọi cặp số  {x;y} thỏa mãn hệ bất phương trình (I). (ảnh 1)

Ta có \(2x - 5y + m \ge 0 \Leftrightarrow m \ge  - 2x + 5y\).

Đặt \(F =  - 2x + 5y\).

Tính giá trị của \(F =  - 2x + 5y\) tại các cặp số \(\left( {x;y} \right)\) là tọa độ của các đỉnh tam giác \(ABC\), ta được:

\(F\left( {4;1} \right) =  - 2.4 + 5.1 =  - 3\); \(F\left( {8;3} \right) =  - 2.8 + 5.3 =  - 1\); \(F\left( {2;3} \right) =  - 2.2 + 5.3 = 11\).

Để bất phương trình \(2x - 5y + m \ge 0\) nghiệm đúng với mọi \(x,y\) thỏa mãn hệ bất phương trình đã cho thì \(m \ge \max F\) trên miền nghiệm của hệ bất phương trình đó hay \(m \ge 11\).

Vậy trong đoạn \(\left[ { - 20;20} \right]\) thì \(m \in \left\{ {11;12;...;20} \right\}\) có 10 giá trị nguyên.

Lời giải

Đáp án đúng là: B

Ta có \(\sin \alpha  = \frac{{\sqrt 3 }}{2};\cos \alpha  =  - \frac{1}{2}\).

Do đó \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\sqrt 3 }}{2}:\left( { - \frac{1}{2}} \right) =  - \sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\cos \alpha  > 0\).  

B. \(\tan \alpha  > 0\).  
C. \(\sin \alpha  < 0\).   
D. \(\cot \alpha  > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Biểu thức: \(f\left( x \right) = {\cos ^4}x + {\cos ^2}x{\sin ^2}x + {\sin ^2}x\) có giá trị bằng

A. \(1\).  

B. \(2\). 
C. \( - 2\). 
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \ge  - 2\end{array} \right.\). 

B. \(\left\{ \begin{array}{l}x - 2y > 0\\x + 3y <  - 2\end{array} \right.\).  
C. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \le  - 2\end{array} \right.\).  
D. \(\left\{ \begin{array}{l}x - 2y < 0\\x + 3y >  - 2\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP