Cho \(\Delta ABC\) có \(\widehat A = 135^\circ ,\widehat C = 15^\circ \) và \(b = 12\). Khi đó:
a) \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = \frac{1}{2}R\).
b) \(a = 12\sqrt 2 \).
c) \(c \approx 8,21\).
d) \(R = 15\).
Cho \(\Delta ABC\) có \(\widehat A = 135^\circ ,\widehat C = 15^\circ \) và \(b = 12\). Khi đó:
a) \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = \frac{1}{2}R\).
b) \(a = 12\sqrt 2 \).
c) \(c \approx 8,21\).
d) \(R = 15\).
Quảng cáo
Trả lời:
a) S, b) Đ, c) S, d) S
a) \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)
b) Ta có \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) = 180^\circ - \left( {135^\circ + 15^\circ } \right) = 30^\circ \).
Ta có \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)\( \Leftrightarrow \frac{a}{{\sin 135^\circ }} = \frac{b}{{\sin 30^\circ }} = \frac{c}{{\sin 15^\circ }} = 2R\).
Suy ra \(a = \frac{{12.\sin 135^\circ }}{{\sin 30^\circ }} = 12\sqrt 2 \).
c) Ta có \(c = \frac{{12.\sin 15^\circ }}{{\sin 30^\circ }} \approx 6,21\).
d) Ta có \(R = \frac{{12}}{{2\sin 30^\circ }} = 12\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: −7
Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x + 1 \ge 0\\x + y \le 2\\x - 2y \le 2\end{array} \right.\) ta được miền tam giác \(ABC\) (kể cả bờ).

Xác định được \(A\left( { - 1;3} \right),B\left( { - 1; - \frac{3}{2}} \right),C\left( {2;0} \right)\).
Lần lượt thay tọa độ \(A,B,C\) vào biểu thức \(F = x - 2y\) ta được \({F_A} = - 7;{F_B} = 2;{F_C} = 2\).
Vậy \({F_{\min }} = - 7\) khi \(x = - 1;y = 3\).
Lời giải
a) Đ, b) S, c) S, d) Đ
a) Gọi \(x,y\) (đơn vị: triệu đồng) tiền bác Minh đầu tư vào kho X, Y.
Ta có hệ bất phương trình \(\left\{ \begin{array}{l}x + y \le 240\\y \ge 40\\x \ge 3y\end{array} \right.\).
b) Miền nghiệm của hệ trên là miền tam giác \(ABC\) với \(A\left( {180;60} \right),B\left( {120;40} \right),C\left( {200;40} \right)\) ở hình:

c) Điểm \(C\left( {200;40} \right)\) thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.
d) Điểm \(A\left( {180;60} \right)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình bác Minh đầu tư vào kho.
Câu 3
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong các câu sau có bao nhiêu câu là mệnh đề:
(1): Số 3 là một số chẵn.
(2): \(2x + 1 = 3\).
(3): Các em hãy cố gắng làm bài thi cho tốt.
(4): \(1 < 3 \Rightarrow 4 < 2\).
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong các câu sau có bao nhiêu câu là mệnh đề:
(1): Số 3 là một số chẵn.
(2): \(2x + 1 = 3\).
(3): Các em hãy cố gắng làm bài thi cho tốt.
(4): \(1 < 3 \Rightarrow 4 < 2\).
A. 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(A = \left\{ {1;2;3;4;5} \right\}\).
B. \(A = \left\{ {0;1;2;3;4;5;6} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
