Câu hỏi:

06/11/2025 25 Lưu

Trong các dãy số sau, dãy số nào là một cấp số nhân?

A. \[1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\, \ldots \].     
B. \[2\,;\,\,4\,;\,\,6\,;\,\,8\,;\,\,16\,;\,\,32\,;\,\, \ldots \].
C. \[ - 2\,;\,\, - 3\,;\,\, - 4\,;\,\, - 5\,;\,\, - 6\,;\,\, - 7\,;\,\, \ldots \].                    
D. \[1\,;\,\,2\,;\,\,4\,;\,\,6\,;\,\,8\,;\,\,16\,;\,\,32\,;\,\, \ldots \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Nhận thấy \(\frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\) nên các dãy số ở các đáp án A, B và C không phải là cấp số nhân.

Riêng đối với dãy \[1\,;\,\,2\,;\,\,4\,;\,\,6\,;\,\,8\,;\,\,16\,;\,\,32\,;\,\, \ldots \] ở đáp án D thỏa mãn: \({u_{n\, + \,1}} = 2{u_n}\,\,\forall n \in \mathbb{N}*.\)

Vậy dãy số \[1\,;\,\,2\,;\,\,4\,;\,\,6\,;\,\,8\,;\,\,16\,;\,\,32\,;\,\, \ldots \] là cấp số nhân với \({u_1} = 1\) và công bội \(q = 2.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ