(1,0 điểm) Từ độ cao \(55,8\,\,{\rm{m}}\) của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \(\frac{1}{{10}}\) độ cao mà quả bóng đạt trước đó. Hỏi tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất là bao nhiêu?

(1,0 điểm) Từ độ cao \(55,8\,\,{\rm{m}}\) của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \(\frac{1}{{10}}\) độ cao mà quả bóng đạt trước đó. Hỏi tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất là bao nhiêu?

Quảng cáo
Trả lời:
Gọi \({h_n}\) là độ dài đường đi của quả bóng ở lần rơi xuống thứ \(n\,\,\left( {n \in \mathbb{N}*} \right)\).
\({l_n}\) là độ dài đường đi của quả bóng ở lần nảy lên thứ \(n\,\,\left( {n \in \mathbb{N}*} \right)\).
Theo đề bài, ta có \({h_1} = 55,8;\,\,{l_1} = \frac{1}{{10}} \cdot 55,8 = 5,58\) và các dãy số \(\left( {{h_n}} \right),\,\,\left( {{l_n}} \right)\) là các cấp số nhân lùi vô hạn với công bội \(q = \frac{1}{{10}}.\)
Từ đó suy ra tổng độ dài đường đi của quả bóng là:
\[S = \frac{{{h_1}}}{{1 - \frac{1}{{10}}}} + \frac{{{l_1}}}{{1 - \frac{1}{{10}}}} = \frac{{10}}{9}\left( {{h_1} + {l_1}} \right) = 68,2\,\,{\rm{(m)}}\].
Vậy tổng độ dài đường đi của quả bóng là \[68,2\,\,{\rm{m}}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ giả thiết \(M\) là điểm trên đoạn \(BC\) sao cho \[MB = 2MC\] nên ta có \[\overrightarrow {BM} = \frac{1}{3}\overrightarrow {BC} \].
Đặt \[AB = x;{\rm{ }}AC = y\] ta có \[{x^2} + {y^2} = 4{a^2}\] (1) (Tam giác \(ABC\) vuông tại \(A\))
Mặt khác từ \[\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {BC} = \overrightarrow {AB} + \frac{1}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \].
Nên có \[\overrightarrow {AM} \cdot \overrightarrow {BC} = {a^2} \Leftrightarrow \left( {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right)\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = {a^2}\]
\[ \Leftrightarrow \frac{1}{3}{\overrightarrow {AC} ^2} - \frac{2}{3}{\overrightarrow {AB} ^2} = {a^2}\,\,{\rm{ }}\left( {{\rm{Do }}\overrightarrow {AB} \cdot \overrightarrow {AC} = 0} \right)\]
\[ \Leftrightarrow \frac{1}{3}{y^2} - \frac{2}{3}{x^2} = {a^2}\,\,\,(2)\]
Từ (1) và (2) ta có \[y = \frac{{a\sqrt {33} }}{3}\]. Vậy \[AC = \frac{{a\sqrt {33} }}{3}\].
Câu 2
Lời giải
Đáp án đúng là: B

Vì \[ABCD\] là hình thoi nên \(AC\) là tia phân giác của góc \(BAD\).
Khi đó \(\widehat {BAC} = \frac{1}{2}\widehat {BAD} = 60^\circ \).
Tam giác \(ABC\) có \(AB = BC\) và \(\widehat {BAC} = 60^\circ \) nên tam giác \(ABC\) đều.
Do đó, \(AC = AB = BC = 2\) và \(\widehat {ACB} = 60^\circ \).
Ta có: \(\overrightarrow {AC} \cdot \overrightarrow {BC} = \left( { - \overrightarrow {CA} } \right) \cdot \left( { - \overrightarrow {CB} } \right) = \overrightarrow {CA} \cdot \overrightarrow {CB} \)\( = \left| {\overrightarrow {CA} } \right| \cdot \left| {\overrightarrow {CB} } \right| \cdot \cos \left( {\overrightarrow {CA} ,\,\,\overrightarrow {CB} } \right)\)
\( = CA \cdot CB \cdot \cos \widehat {ACB} = 2 \cdot 2 \cdot \cos 60^\circ = 2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.