Câu hỏi:

06/11/2025 13 Lưu

(1,0 điểm) Từ độ cao \(55,8\,\,{\rm{m}}\) của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \(\frac{1}{{10}}\) độ cao mà quả bóng đạt trước đó. Hỏi tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất là bao nhiêu?

Từ độ cao \(55,8\,\,{\rm (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \({h_n}\) là độ dài đường đi của quả bóng ở lần rơi xuống thứ \(n\,\,\left( {n \in \mathbb{N}*} \right)\).

\({l_n}\) là độ dài đường đi của quả bóng ở lần nảy lên thứ \(n\,\,\left( {n \in \mathbb{N}*} \right)\).

Theo đề bài, ta có \({h_1} = 55,8;\,\,{l_1} = \frac{1}{{10}} \cdot 55,8 = 5,58\) và các dãy số \(\left( {{h_n}} \right),\,\,\left( {{l_n}} \right)\) là các cấp số nhân lùi vô hạn với công bội \(q = \frac{1}{{10}}.\)

Từ đó suy ra tổng độ dài đường đi của quả bóng là:

\[S = \frac{{{h_1}}}{{1 - \frac{1}{{10}}}} + \frac{{{l_1}}}{{1 - \frac{1}{{10}}}} = \frac{{10}}{9}\left( {{h_1} + {l_1}} \right) = 68,2\,\,{\rm{(m)}}\].

Vậy tổng độ dài đường đi của quả bóng là \[68,2\,\,{\rm{m}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ