Câu hỏi:

07/11/2025 84 Lưu

Khi một quả bóng được đá lên nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết quỹ đạo của quả bóng là một đường parabol trong mặt phẳng toạ độ \(Oxy\) có phương trình \(h = a{t^2} + bt + c\left( {a < 0} \right)\) trong đó \(t\) là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên và \(h\) là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1m và sau 1 giây thì nó đạt độ cao \(6,5{\rm{m}}\);sau 4 giây nó đạt độ cao \(5{\rm{m}}\). Tính tổng \(2a + b + c\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 5

Theo giả thiết ta có hệ phương trình \(\left\{ \begin{array}{l}c = 1\\a{.1^2} + b.1 + c = 6,5\\a{.4^2} + b.4 + c = 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{3}{2}\\b = 7\\c = 1\end{array} \right.\).

Do đó \(2a + b + c =  - 3 + 7 + 1 = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} \).

Đúng
Sai

b) \(\overrightarrow {AI}  = \overrightarrow {AC}  + \overrightarrow {AB} \).

Đúng
Sai

c) \(\overrightarrow {AI}  = \overrightarrow {AB}  + \frac{3}{2}\overrightarrow {AD} \).

Đúng
Sai
d) \(\overrightarrow {AJ}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} .\)
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) S

Cho hình bình hành ABCD. Gọi I,J lần lượt là trung điểm BC và CD. Khi đó: (ảnh 1)

a) \(\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} \).

b) \(\overrightarrow {AI}  = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {AB}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} )\).

c) \(\overrightarrow {AI}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AB}  + \overrightarrow {AD} )\)\( = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

d) \(\overrightarrow {AJ}  = \frac{1}{2}(\overrightarrow {AD}  + \overrightarrow {AC} ) = \frac{1}{2}\overrightarrow {AD}  + \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AD} ) = \frac{1}{2}\overrightarrow {AB}  + \overrightarrow {AD} .\)

Câu 2

a) \(a > 0.\)

Đúng
Sai

b) Toạ độ đỉnh \(I(2; - 1)\), trục đối xứng \(x = 2.\)

Đúng
Sai

c) Đồng biến trên khoảng \(( - \infty ;2)\); Nghịch biến trên khoảng \((2; + \infty )\).

Đúng
Sai
d) \(x\) thuộc các khoảng \(( - \infty ;1)\) và \((3; + \infty )\) thì \(f(x) > 0\).
Đúng
Sai

Lời giải

a) Đ, b) Đ, c) S, d) Đ

a) \(a > 0.\)

b) Toạ độ đỉnh \(I(2; - 1)\), trục đối xứng \(x = 2.\)

c) Đồng biến trên khoảng \((2; + \infty )\); Nghịch biến trên khoảng \(( - \infty ;2)\).

d) \(x\) thuộc các khoảng \(( - \infty ;1)\) và \((3; + \infty )\) thì \(f(x) > 0\).

Câu 3

a) Hệ trên không là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai
b) Cặp \(\left( {4;1} \right)\) thuộc miền nghiệm của hệ.
Đúng
Sai

c) Biểu diễn miền nghiệm của hệ là phần được tô đậm như trong hình dưới đây

Cho hệ bất phương trình bậc nhất hai ẩn 2x + y <= 4; x + 2y <= 4; x >= 0; y >=  0. (ảnh 2)
Đúng
Sai
d) Gọi \(\left( {x;y} \right)\) thỏa mãn hệ. Biểu thức \(F\left( {x;y} \right) = 3x + 4y + 2024\) đạt giá trị lớn nhất tại \(\left( {0;2} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \].  

B. \[\overrightarrow {AC}  + \overrightarrow {CB}  = \overrightarrow {AB} \].

C. \[\overrightarrow {CA}  + \overrightarrow {BC}  = \overrightarrow {BA} \]. 
D. \[\overrightarrow {CB}  + \overrightarrow {AC}  = \overrightarrow {BA} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\).  

B. \(\left| {\overrightarrow {OA} } \right| = a\).   
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\).    
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) \(\tan \alpha  = 3\).

Đúng
Sai

b) \(\alpha \) là góc tù.

Đúng
Sai

c) \(\sin \alpha  = \frac{{3\sqrt {10} }}{{10}}\).

Đúng
Sai
d) Giá trị của biểu thức \(P = \frac{{2\sin \alpha  - 3\cos \alpha }}{{3\sin \alpha  + 2\cos \alpha }}\) bằng \(\frac{1}{5}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP