Cho tam giác \(ABC\) có độ dài ba cạnh \(AB = c\), \(BC = a\), \(AC = b\), \(R\) là bán kính đường kính đường tròn ngoại tếp tam giác, \(S\) là diện tích tam giác \(ABC\). Khẳng định nào sau đây sai?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Xét đáp án A ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow a = \frac{{b.\sin A}}{{\sin B}}\) (theo định lí sin) là mệnh đề đúng.
Xét đáp án B ta có: \(S = \frac{{abc}}{{4R}}\) nên \(S = \frac{{abc}}{{2R}}\) là mệnh đề sai.
Xét đáp án C ta có: \({b^2} = {a^2} + {c^2} - 2ac\cos B \Leftrightarrow \cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\) (theo định lí côsin) là mệnh đề đúng.
Xét đáp án D ta có: \({a^2} = {b^2} + {c^2} - 2bc.cosA\) (theo định lí côsin) là mệnh đề đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi số bánh trưng được gói là \(x\) (bánh), số bánh ống được gói là \(y\) (bánh) \(\left( {x,y \ge 0} \right)\).
Khi đó số điểm thưởng là \(f\left( {x;\,y} \right) = 5x + 6y\).
Số \(kg\) gạo nếp cần dùng là: \(0,4x + 0,6y\,\left( {kg} \right)\).
Số \(kg\)thịt ba chỉ cần dùng là: \(0,05x + 0,075y\,\,\left( {kg} \right)\).
Số \(kg\) đậu xanh cần dúng là: \(0,1x + 0,15y\,\left( {kg} \right)\).
Vì yêu cầu cuộc thi là sử dụng tối đa \(20kg\) gạo nếp, \(2kg\) thịt ba chỉ và \(5kg\) đậu xanh nên ta có hệ bất phương trình:
\(\left\{ \begin{array}{l}0,4x + 0,6y \le 20\\0,05x + 0,075y \le 2\\0,1x + 0,15y \le 5\\x \ge 0\\y \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + 3y \le 100\\2x + 3y \le 80\\2x + 3y \le 100\\x \ge 0\\y \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + 3y \le 80\\x \ge 0\\y \ge 0\end{array} \right.\)
Vậy miền nghiệm là phần miền trong tam giác \(OAB\) với \(O\left( {0;\,0} \right),A\left( {0;\,\,\frac{{80}}{3}} \right),B\left( {40;\,\,0} \right)\) như hình vẽ sau:

Biểu thức \(f\left( {x;\,y} \right) = 5x + 7y\) đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình khi \(\left( {x;\,y} \right)\) là toạ độ một trong các đỉnh \(O\left( {0;\,0} \right),\,\,A\left( {0;\,\frac{{80}}{3}} \right),\,\,B\left( {40;\,0} \right)\).
Ta có:
Tại \(O\left( {0;\,\,0} \right)\) có \(f\left( {0;\,0} \right) = 5.0 + 6.0 = 0\);
Tại \(A\left( {0;\,\frac{{80}}{3}} \right)\) có \(f\left( {0;\,\frac{{80}}{3}} \right) = 5.0 + 6.\frac{{80}}{3} = 160\);
Tại \(B\left( {40;\,\,0} \right)\) có \(f\left( {40;\,0} \right) = 5.40 + 7.0 = 200\).
Suy ra \(f\left( {x;\,y} \right)\) lớn nhất bằng \(200\) khi \(x = 40\) và \(y = 0\).
Vậy để được điểm thưởng lớn nhất thì cần gói \(40\) cái bánh trưng và \(0\) cái bánh ống.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Xét đáp án A ta có: \(\overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AD} \) (theo quy tắc ba điểm) nên \(\overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {CB} \) là mệnh đề sai.
Xét đáp án B ta có: \(\overrightarrow {DC} + \overrightarrow {DA} = \overrightarrow {DB} \) (theo quy tắc hình bình hành) là mệnh đề đúng.
Xét đáp án C ta có: \(\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} \) (theo quy tắc ba điểm). Vì \(ABCD\) là hình bình hành nên \(\overrightarrow {AD} = \overrightarrow {BC} \) nên \(\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {BC} \) là một mệnh đề đúng.
Xét đáp án D ta có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (theo quy tắc hình bình hành) là một mệnh đề đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





