Trên sườn đồi, với độ dốc \[12\% \] (độ dốc của sườn đồi được tính bằng tan góc nhọn tạo bởi sườn đồi với phương ngang) có một cây cao mọc thẳng đứng. Ở phía chân đồi, cách gốc cây \[30\]m, người ta nhìn ngọn cây dưới một góc \[45^\circ \] so với phương ngang. Hỏi chiều cao của cây là bao nhiêu (làm tròn đến hàng đơn vị, theo đơn vị mét)?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Coi người quan sát từ điểm \[A\] cách gốc cây \[B\] một khoảng bằng \[30\]m, nhìn ngọn cây \[C\] dưới góc \[45^\circ \]. Ta có hình vẽ sau:

Khi đó \[AB = 30\,\,m,\widehat {CAH} = 45^\circ \].
Do sườn đồi có độ dốc \[12\% \], nên sườn đồi tạo với phương ngang một góc \[\widehat {BAH} \approx 7^\circ \].
Từ đó \[\widehat {BAC} = \widehat {HAC} - \widehat {HAB} \approx 45^\circ - 7^\circ = 38^\circ \] và \[\widehat {BCA} = 45^\circ \].
Áp dụng định lí sin cho tam giác \[ABC\], ta được:
\[BC = \frac{{AB}}{{\sin \widehat {BCA}}}.\sin \widehat {BAC} = \frac{{30}}{{\sin 38^\circ }}.\sin 45^\circ \approx 26\](m).
Vậy chiều cao của cây khoảng \(26\,\,m\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Áp dụng quy tắc hình bình hành ta được:
\[\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \]. Do đó A sai, B đúng.
Ta có: O là tâm của hình bình hành nên \(\overrightarrow {AC} = 2\overrightarrow {AO} \)
Khi đó \[\overrightarrow {AB} + \overrightarrow {AD} = 2\overrightarrow {AO} \]. Do đó C đúng.
\[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \left( {\overrightarrow {OB} + \overrightarrow {OD} } \right) = \overrightarrow 0 \]. Do đó D đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
+) Ta có \[A \subset X\] nên \[X\] có ít nhất \[3\] phần tử \[\left\{ {1;\,2;\,3} \right\}\].
+) Mà \[X \subset B\] nên \[X\] có nhiều nhất \[5\] phần tử và các phần tử thuộc \[X\] cũng phải thuộc \[B\].
Do đó các tập \[X\] thỏa mãn là \[\left\{ {1;\,2;\,3} \right\},\,\left\{ {1;\,2;\,3;\,4} \right\},\,\left\{ {1;\,2;\,3;\,5} \right\},\,\left\{ {1;\,2;\,3;\,4;\,5} \right\}\].
Vì vậy có \[4\] tập \[X\] thỏa mãn.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




