Cho tam giác \(ABC\) có \(AB = 5,\,\,BC = 7,\,\,AC = 8\). Chiều cao xuất phát từ đỉnh \(A\) của tam giác \(ABC\) có độ dài là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Kẻ \(AH \bot BC\)
Nửa chu vi tam giác \(ABC\) là: \(p = \frac{{5 + 7 + 8}}{2} = 10\).
Diện tích tam giác \(ABC\) là:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {10\left( {10 - 5} \right)\left( {10 - 7} \right)\left( {10 - 8} \right)} = 10\sqrt 3 \) (đvdt).
Mặt khác, ta có:
\(S = \frac{1}{2}BC.AH = \frac{1}{2}.7.AH = \frac{7}{2}AH = 10\sqrt 3 \)
\( \Rightarrow AH = \frac{{20\sqrt 3 }}{7}\).
Vậy độ dài chiều cao xuất phát từ đỉnh \(A\) là: \(\frac{{20\sqrt 3 }}{7}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
+) Nếu tam giác \(ABC\) đều thì \(AB = AC = BC\). Do đó \(\left( I \right)\) là mệnh đề đúng.
+) Ta có nếu \(a = 3,b = 5\) là các số lẻ vẫn thỏa mãn \(a + b = 3 + 5 = 8\) chẵn. Do đó \(\left( {II} \right)\) là mệnh đề sai.
+) Nếu tam giác \(ABC\) có tổng hai góc bằng \(90^\circ \) thì tam giác \(ABC\) vuông. Do đó \(\left( {III} \right)\) là mệnh đề sai.
Vậy có duy nhất một mệnh đề đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Mệnh đề “Nếu \[a + b < 2\] thì một trong hai số \[a\] hoặc \[b\] nhỏ hơn 1” được phát biểu dưới dạng “điều kiện cần”, “điều kiện đủ” như sau:
Điều kiện đủ để một trong hai số a hoặc b nhỏ hơn 1 là \(a + b < 2\).
Điều kiện cần để \(a + b < 2\) là một trong hai số a hoặc b nhỏ hơn 1 là.
Ta có mệnh đề đảo:
Nếu một trong hai số \[a\] hoặc \[b\] nhỏ hơn 1 thì \(a + b < 2\) là chưa đúng với \[a = 0 < 1\] và \[b = 2\] thì \(a + b = 0 + 2 < 2\) là sai. Do đó ta không có mệnh đề điều kiện cần và đủ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.