Câu hỏi:

14/11/2025 155 Lưu

(1,0 điểm) Một công ty cần thuê xe để chở \(120\) người và \(6,5\) tấn hàng. Nơi thuê xe có hai loại xe \(A\) và \(B\), trong đó loại xe \(A\) có \(9\) chiếc và loại xe \(B\) có \(8\) chiếc. Một chiếc xe loại \(A\) cho thuê với giá 4 triệu đồng, một chiếc xe loại \(B\) cho thuê với giá 3 triệu đồng. Biết rằng mỗi chiếc xe loại \(A\) có thể chở tối đa \(20\) người và \(0,5\) tấn hàng; mỗi chiếc xe loại \(B\) có thể chở tối đa \(10\) người và \(2\) tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là thấp nhất?  

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi số xe loại \(A\) cần thuê là \(x\) (xe) \(\left( {0 \le x \le 9} \right)\).

Số xe loại \(B\) cần thuê là \(y\) (xe) \(\left( {0 \le y \le 8} \right)\).

Xe loại \(A\) có thể chở tối đa \(20\) người và xe loại \(B\) có thể chở tối đa \(10\) người, cần chở \(120\) người nên tổng số tấn hàng hai xe cần trở tối thiểu là 120. Do đó ta có:

\(20x + 10y \ge 120\) hay \(2x + y \ge 12\).

Xe loại \(A\) có thể chở tối đa \(0,5\) tấn hàng và xe loại \(B\) có thể chở tối đa \(2\) tấn hàng, cần chở \(6,5\) tấn hàng nên tổng số tấn hàng hai xe cần trở tối thiểu là \(6,5\). Do đó ta có:

\(0,5x + 2y \ge 6,5\) hay \(x + 4y \ge 13\).

Từ đó ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 9\\0 \le y \le 8\\2x + y \ge 12\\x + 4y \ge 13\end{array} \right.\).

Miền nghiệm của hệ bất phương trình trên là miền trong của tứ giác \(ABCD\) với \(A\left( {2;8} \right)\), \(B\left( {9;8} \right)\), \(C\left( {9;1} \right)\), \(D\left( {5;\,2} \right)\) như hình vẽ dưới đây:

Hướng dẫn giải  Ta có hình vẽ sau: (ảnh 1)

Chi phí thuê xe là: \(F\left( {x;y} \right) = 4x + 3y\) (triệu đồng).

Ta có:

Tại \(A\left( {2;8} \right)\) có \(F\left( {2;8} \right) = 4.2 + 3.8 = 32\);

Tại \(B\left( {9;8} \right)\) có \(F\left( {9;8} \right) = 4.9 + 3.8 = 60\);

Tại \(C\left( {9;1} \right)\)có \(F\left( {9;1} \right) = 4.9 + 3.1 = 39\);

Tại \(D\left( {5;\,2} \right)\) có \(F\left( {5;2} \right) = 4.5 + 3.2 = 26\)

Để chi phí bỏ ra là thấp nhất thì cần thuê 5 loại xe \(A\) và 2 loại xe \(B\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có hình vẽ sau:

Một tháp viễn thông cao \(42\,\,m\) được dựng (ảnh 2)

Khi đó: \(\widehat {MHN} = 34^\circ \)

\( \Rightarrow \widehat {PMN} = 90^\circ  - \widehat {MHN} = 90^\circ  - 34^\circ  = 56^\circ \)

Áp dụng định lí cosin trong tam giác \(MNP\), có:

\(N{P^2} = M{N^2} + M{P^2} - 2.MN.MP.{\rm{cos}}\widehat {NMP}\)

\( = {33^2} + {42^2} - 2.33.42.{\rm{cos56}}^\circ \)

\( \approx 1302,9\)

\( \Leftrightarrow NP \approx 36,1\).

Vậy chiều dài của sợi dây cáp khoảng \(36,1\,\,m\).

Câu 2

A. \(x \subset A\);          
B. \(\left\{ x \right\} \in A\);     
C. \(x \in A\);                                                                   
D. \(A \subset \left\{ x \right\}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có: \(x\) là một phần tử của tập hợp \(A\) nên ta viết \(x \in A\).

Câu 3

A. P¯:"x:x2=x" ;                                                                           
B. P¯:"x:x2x";
C. P¯:"x:x2x" ;                                                                           
D. P¯:"x:x2=x".

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. “Điều kiện đủ để một trong hai số a hoặc b nhỏ hơn 1 là \(a + b < 2\)”;
B. “Điều kiện đủ đ\[a + b < 2\] là một trong hai số \[a\] hoặc \[b\] nhỏ hơn 1”;
C. “Điều kiện cần và đủ để \(a + b < 2\) là một trong hai số a hoặc b nhỏ hơn 1”; 
D. “Điều kiện cần và đủ để một trong hai số \[a\] hoặc \[b\] nhỏ hơn 1 là \[a + b < 2\]”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{5\sqrt 3 }}{2}\);                                  
B. \(10\sqrt 3 \);                                 
C.\(\frac{{20\sqrt 3 }}{7}\);                          
D. \(\frac{{10\sqrt 3 }}{7}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP