Câu hỏi:

14/11/2025 23 Lưu

PHẦN II.  TỰ LUẬN (3 điểm)

(1,0 điểm)

a) Cho hai tập hợp \(A = \left\{ {x \in \mathbb{Z}|\left( {2x - 1} \right)\left( {{x^2} - 4} \right) = 0} \right\}\) và \(B = \left\{ {x \in \mathbb{N}|\left| x \right| \le 3} \right\}\). Tìm tập hợp \(A \cup B\).

b) Cho hai tập hợp \(M = \left( {0;3} \right)\) và \(N = \left[ {m;m + 1} \right)\), với \(m \in \mathbb{R}\). Tìm \(m\) để \(M \cap N = N\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) +) Ta có:

\(\left( {2x - 1} \right)\left( {{x^2} - 4} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2x - 1 = 0\\{x^2} - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{2}\\x =  - 2\\x = 2\end{array} \right.\)

Mà \( - 2;\,\,2 \in \mathbb{Z}\) và \(\frac{1}{2} \notin \mathbb{Z}\) nên \(A = \left\{ { - 2;\,\,2} \right\}\).

Xét \(\left| x \right| \le 3 \Leftrightarrow \left[ \begin{array}{l} - x \le 3\\x \le 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge  - 3\\x \le 3\end{array} \right. \Leftrightarrow  - 3 \le x \le 3\)

Mà \(x \in \mathbb{N}\) nên \(B = \left\{ {0;\,\,1;\,\,2;\,\,3} \right\}\).

Vì vậy \(A \cup B = \left\{ { - 2;\,\,0;\,\,1;\,\,2;\,\,3} \right\}\).

b) Để \(M \cap N = N\) thì \(N \subset M\)

\( \Leftrightarrow 0 < m < m + 1 \le 3\)

\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m + 1 \le 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m \le 2\end{array} \right. \Leftrightarrow 0 < m \le 2\)

Vậy với \(0 < m \le 2\) thì \(M \cap N = N\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số \(ha\) trồng dứa và trồng củ đậu lần lượt là \(x\) và \(y\) (\(ha\)), \(\left( {x,y \ge 0} \right)\).

Khi đó ta có: \(x + y \le 8\).

Tổng số công trồng \(x\left( {ha} \right)\) dứa và \(y\left( {ha} \right)\) củ đậu thỏa mãn không quá \(180\) công là: \(20x + 30y \le 180\) hay \(2x + 3y \le 18\).

Khi đó ta có hệ bất phương trình: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\).

Miền nghiệm của hệ bất phương trình là miền trong của tứ giác \(OABC\) với \(O\left( {0;\,\,0} \right)\), \(A\left( {0;\,\,6} \right)\), \(B\left( {6;\,\,2} \right)\), \(D\left( {8;\,\,0} \right)\).

Hướng dẫn giải  Ta có: \(\widehat {B (ảnh 1)

Tiền thu được khi trồng \(x\left( {ha} \right)\) dứa và \(y\left( {ha} \right)\) củ đậu là: \(F\left( {x;\,\,y} \right) = 5x + 4y\) (triệu đồng).

Ta có:

Tại \(O\left( {0;\,\,0} \right)\) có \(F\left( {0;\,\,0} \right) = 5.0 + 4.0 = 0\);

Tại \(A\left( {0;\,\,6} \right)\) có \(F\left( {0;\,\,6} \right) = 5.0 + 4.6 = 24\);

Tại \(B\left( {6;\,\,2} \right)\) có \(F\left( {6;\,\,2} \right) = 5.6 + 4.2 = 38\);

Tại \(D\left( {8;\,\,0} \right)\) có \(F\left( {8;\,\,0} \right) = 5.8 + 4.0 = 40\).

Vậy để thu được nhiều tiền nhất hộ nông dân đó cần trồng \(8\,\,ha\) dứa và \(0\,\,ha\) củ đậu.

Câu 2

A. \(6\);                        
B. \(4\);                        
C. \(16\);                          
D. \(5\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Tập hợp con của \(M\) có \(2\) phần tử là:

\(\left\{ { - 3;\,\,4} \right\};\,\,\left\{ { - 3;\,\,a} \right\};\,\,\left\{ { - 3;\,d} \right\};\,\,\left\{ {4;\,\,a} \right\};\,\,\left\{ {4;\,\,d} \right\};\,\,\left\{ {a;\,\,d} \right\}\).

Vậy có tất cả \(6\) tập con của tập hợp \(M\) có \(2\) phần tử.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(D\);                       
B. \({C_D}\left( {A \cap B} \right)\);             
C. \({C_D}\left( {A \cup B} \right)\);            
D. \(A \cup B\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\sin 143^\circ \);  
B. \({\rm{cos}}143^\circ \);                                 
C. \(\sin 53^\circ \);    
D. \({\rm{cos5}}3^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP