(1,0 điểm)
Một hộ nông dân định trồng củ đậu và dứa trên diện tích \(8\,\,ha\). Trên mỗi \(ha\), nếu trồng dứa thì cần \(20\) công và thu được \(5\) triệu đồng, nếu trồng củ đậu thì cần \(30\) công và thu được \(4\) triệu đồng. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu \(ha\) để thu được nhiều tiền nhất, biết rằng tổng số công không quá \(180\)?
(1,0 điểm)
Một hộ nông dân định trồng củ đậu và dứa trên diện tích \(8\,\,ha\). Trên mỗi \(ha\), nếu trồng dứa thì cần \(20\) công và thu được \(5\) triệu đồng, nếu trồng củ đậu thì cần \(30\) công và thu được \(4\) triệu đồng. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu \(ha\) để thu được nhiều tiền nhất, biết rằng tổng số công không quá \(180\)?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi số \(ha\) trồng dứa và trồng củ đậu lần lượt là \(x\) và \(y\) (\(ha\)), \(\left( {x,y \ge 0} \right)\).
Khi đó ta có: \(x + y \le 8\).
Tổng số công trồng \(x\left( {ha} \right)\) dứa và \(y\left( {ha} \right)\) củ đậu thỏa mãn không quá \(180\) công là: \(20x + 30y \le 180\) hay \(2x + 3y \le 18\).
Khi đó ta có hệ bất phương trình: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\).
Miền nghiệm của hệ bất phương trình là miền trong của tứ giác \(OABC\) với \(O\left( {0;\,\,0} \right)\), \(A\left( {0;\,\,6} \right)\), \(B\left( {6;\,\,2} \right)\), \(D\left( {8;\,\,0} \right)\).

Tiền thu được khi trồng \(x\left( {ha} \right)\) dứa và \(y\left( {ha} \right)\) củ đậu là: \(F\left( {x;\,\,y} \right) = 5x + 4y\) (triệu đồng).
Ta có:
Tại \(O\left( {0;\,\,0} \right)\) có \(F\left( {0;\,\,0} \right) = 5.0 + 4.0 = 0\);
Tại \(A\left( {0;\,\,6} \right)\) có \(F\left( {0;\,\,6} \right) = 5.0 + 4.6 = 24\);
Tại \(B\left( {6;\,\,2} \right)\) có \(F\left( {6;\,\,2} \right) = 5.6 + 4.2 = 38\);
Tại \(D\left( {8;\,\,0} \right)\) có \(F\left( {8;\,\,0} \right) = 5.8 + 4.0 = 40\).
Vậy để thu được nhiều tiền nhất hộ nông dân đó cần trồng \(8\,\,ha\) dứa và \(0\,\,ha\) củ đậu.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) +) Ta có:
\(\left( {2x - 1} \right)\left( {{x^2} - 4} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2x - 1 = 0\\{x^2} - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{2}\\x = - 2\\x = 2\end{array} \right.\)
Mà \( - 2;\,\,2 \in \mathbb{Z}\) và \(\frac{1}{2} \notin \mathbb{Z}\) nên \(A = \left\{ { - 2;\,\,2} \right\}\).
Xét \(\left| x \right| \le 3 \Leftrightarrow \left[ \begin{array}{l} - x \le 3\\x \le 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge - 3\\x \le 3\end{array} \right. \Leftrightarrow - 3 \le x \le 3\)
Mà \(x \in \mathbb{N}\) nên \(B = \left\{ {0;\,\,1;\,\,2;\,\,3} \right\}\).
Vì vậy \(A \cup B = \left\{ { - 2;\,\,0;\,\,1;\,\,2;\,\,3} \right\}\).
b) Để \(M \cap N = N\) thì \(N \subset M\)
\( \Leftrightarrow 0 < m < m + 1 \le 3\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m + 1 \le 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\m \le 2\end{array} \right. \Leftrightarrow 0 < m \le 2\)
Vậy với \(0 < m \le 2\) thì \(M \cap N = N\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Gọi \(x\) và \(y\) lần lượt là số phút Thảo dùng để đọc sách \(A\) và sách \(B\)\[\left( {x\,,\,\,y \in \mathbb{N}} \right)\]
Mỗi ngày bạn Thảo đều dành không quá 30 phút để đọc nên ta có: \(x + y \ge 30\).
Một phút Thảo đọc được \(\frac{3}{2}x\) trang sách \(A\).
Một phút Thảo đọc được \(2y\) trang sách \(B\).
Số trang sách Thảo đọc trong một ngày là: \(\frac{3}{2}x + 2y\) (trang).
Mỗi ngày Thảo đọc được ít nhất 35 trang nên ta có: \(\frac{3}{2}x + 2y \le 35\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

