Câu hỏi:

16/11/2025 7 Lưu

Nghiệm dương nhỏ nhất của phương trình \(\cos \left( {\frac{\pi }{4} - x} \right) + 1 = 0\) có dạng \(x = \frac{a}{b}\pi \) với \(\frac{a}{b}\) là phân số tối giản. Tính \(T = a + b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\cos \left( {\frac{\pi }{4} - x} \right) + 1 = 0\)\( \Leftrightarrow \cos \left( {\frac{\pi }{4} - x} \right) = - 1\)\( \Leftrightarrow \frac{\pi }{4} - x = \pi + k2\pi \)\( \Leftrightarrow x = \frac{{ - 3\pi }}{4} + k2\pi \).

Vì nghiệm của phương trình là nghiệm dương nhỏ nhất nên \(k = 1\).

Do đó \(x = \frac{{5\pi }}{4}\). Suy ra \(a = 5;b = 4\). Vậy T = 5 + 4 = 9.

Trả lời: 9.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(x \in \left( {\frac{\pi }{2};\pi } \right)\) nên \(\cos x < 0\).

Mà \({\cos ^2}x = 1 - {\sin ^2}x = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9}\) \( \Rightarrow \cos x = - \frac{{2\sqrt 2 }}{3}\).

\(A = \cos \left( {\frac{\pi }{4} - x} \right) = \cos \frac{\pi }{4}\cos x + \sin \frac{\pi }{4}\sin x\)\( = \frac{{\sqrt 2 }}{2}.\frac{{ - 2\sqrt 2 }}{3} + \frac{{\sqrt 2 }}{2}.\frac{1}{3} \approx - 0,4\).

Trả lời: −0,4.

Câu 2

Hàm số \(y = \sin x\) là hàm số tuần hoàn với chu kì \(T = 2\pi \).

Hàm số \(y = \sin x\) đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

Hàm số \(y = \sin x\) có tập giá trị là \(\left[ { - 1;1} \right]\).

Hàm số \(y = \sin x\) là hàm số chẵn.

Lời giải

Hàm số \(y = \sin x\) là hàm số lẻ. Chọn D.

Câu 4

\(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\).

\(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).

\(\mathbb{R}\backslash \left\{ {k\pi |k \in \mathbb{Z}} \right\}\).

\(\mathbb{R}\backslash \left\{ {k2\pi |k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi } \right\},k \in \mathbb{Z}\).

\(y = - \cos x,\forall x \in D\).

\(f\left( x \right) = 1 \Leftrightarrow x = k2\pi ,k \in \mathbb{Z}\).

Tổng các nghiệm của phương trình \(f\left( x \right) = 1\) trên khoảng \(\left[ { - \pi ;6\pi } \right]\) là \(12\pi \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(\cot \alpha = \frac{1}{3}\).

\(\tan \left( {\alpha + 3\pi } \right) = 3 + 3\pi \).

\(\tan \left( { - \alpha } \right) = - 3\).

\(\cot 2\alpha = - \frac{4}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP