Câu hỏi:

17/11/2025 106 Lưu

(1 điểm) Để đo đường kính của một hồ hình tròn, người ta làm như sau: Lấy ba điểm \(A,\,\,B,\,\,C\) như hình vẽ sao cho \(AB = 7,5\,\,{\rm{m}};\,\,AC = 10,5\,\,{\rm{m}};\,\widehat {BAC} = 135^\circ \). Hãy tính đường kính của hồ nước đó.

Vậy đường kính của (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vậy đường kính của (ảnh 2)

Áp dụng định lí côsin cho tam giác \(ABC\) ta có:

\(B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC \cdot \cos \widehat {BAC} = {\left( {7,5} \right)^2} + {\left( {10,5} \right)^2} - 2 \cdot 8,5 \cdot 10,5 \cdot \cos 135^\circ \approx 277,87\)

Suy ra \(BC \approx 16,67\) (m).

Đường tròn hồ đi qua ba đỉnh của tam giác \(ABC\) nên đường tròn này ngoại tiếp tam giác \(ABC\). Gọi \(R\) là bán kính đường tròn này. Theo định lí sin ta có: \(\frac{{BC}}{{\sin \widehat {BAC}}} = 2R\).

Thay số ta được: \(2R = \frac{{BC}}{{\sin \widehat {BAC}}} \approx \frac{{16,67}}{{\sin 135^\circ }} \approx 23,57\) (m).

Do đó, đường kính \(d = 2R \approx 23,57\) (m).

Vậy đường kính của hồ nước khoảng 23,57 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho ba lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \) cùng tác động vào một vật tại một điểm làm vật đứng yên (xem hình vẽ). Xét \(\overrightarrow {{F_4}} = \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \). Phát biểu nào sau đây là đúng?

A. \(\overrightarrow {{F_1}} = \overrightarrow {{F_4}} \);                                 
B. \(\overrightarrow {{F_1}} = - \overrightarrow {{F_4}} \);                               
C. \(\overrightarrow {{F_1}} = \overrightarrow {{F_4}} + \overrightarrow {{F_2}} \);                               
D. \(\overrightarrow {{F_1}} = \overrightarrow {{F_4}} + \overrightarrow {{F_3}} \).

Lời giải

Đáp án đúng là: B

ba lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \) cùng tác động vào một vật tại một điểm làm vật đứng yên nên ta có \(\overrightarrow {{F_1}} + \,\,\overrightarrow {{F_2}} + \,\,\overrightarrow {{F_3}} = \overrightarrow 0 \Leftrightarrow \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = - \overrightarrow {{F_1}} \).

\(\overrightarrow {{F_4}} = \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \). Vậy \(\overrightarrow {{F_4}} = - \overrightarrow {{F_1}} \) hay \(\overrightarrow {{F_1}} = - \overrightarrow {{F_4}} \).

Lời giải

Gọi \(x,\,\,y\) lần lượt là số tấm thiệp loại nhỏ và loại lớn cần vẽ. Ta có \(x \ge 0,\,y \ge 0\).

Số giờ để vẽ \(x\) tấm thiệp loại nhỏ và \(y\) tấm thiệp loại lớn là \(2x + 3y\).

Vì học sinh chỉ có 30 giờ để vẽ nên \(2x + 3y \le 30\).

Số tấm thiệp phải vẽ ít nhất là 12 tấm nên \(x + y \ge 12\).

Từ đó ta thu được hệ bất phương trình bậc nhất hai ẩn sau: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \ge 12\\2x + 3y \le 30\end{array} \right.\).

Số tiền thu được khi bán \(x\) tấm thiệp loại nhỏ và \(y\) tấm thiệp loại lớn là \(F\left( {x;\,y} \right) = 10x + 20y\) (nghìn đồng).

Bài toán trở thành: Tìm giá trị lớn nhất của \(F\left( {x;\,\,y} \right)\) khi \(\left( {x;\,\,y} \right)\) thỏa mãn hệ bất phương trình trên.

Biểu diễn miền nghiệm của hệ bất phương trình trên hệ trục tọa độ \[Oxy\] ta được như hình dưới.

Một học sinh dự định vẽ các tấm thiệp xuân làm bằng tay để bán trong một hội chợ Tết. Cần 2 giờ để vẽ một tấm thiệp loại nhỏ có giá 10 nghìn đồng và 3 giờ để vẽ một tấm thiệp loại lớn có giá 20 nghìn đồng. (ảnh 1)

Miền nghiệm của hệ là miền tam giác \(ABC\) với các đỉnh: \(A\left( {6;\,\,6} \right)\), \(B\left( {15;\,\,0} \right)\), \(C\left( {12;\,\,0} \right)\).

Tính giá trị của \(F\left( {x;\,\,y} \right)\) tại các đỉnh của ngũ giác:

Tại \(A\left( {6;\,\,6} \right)\): \(F\left( {6;\,\,6} \right) = 10 \cdot 6 + 20 \cdot 6 = 180\);

Tại \(B\left( {15;\,\,0} \right)\): \(F\left( {15;\,\,0} \right) = 10 \cdot 15 + 20 \cdot 0 = 150\);

Tại \(C\left( {12;\,\,0} \right)\): \(F\left( {12;\,\,0} \right) = 10 \cdot 12 + 20 \cdot 0 = 120\).

\(F\) đạt giá trị lớn nhất bằng 180 tại \(A\left( {6;\,\,6} \right)\).

Vậy bạn học sinh đó cần vẽ 6 tấm thiệp loại nhỏ và 6 tấm thiệp loại to để có được nhiều tiền nhất.

Câu 3

A. \(M = \left\{ { - 4;\,\, - 3;\, - 2;\, - 1;\,\,0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5} \right\}\);           
B. \(M = \left\{ {\, - 3;\, - 2;\, - 1;\,\,0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5} \right\}\);
C. \(M = \left\{ {\, - 3;\, - 2;\, - 1;\,\,0;\,\,1;\,\,2;\,\,3;\,\,4} \right\}\);                     
D. \(M = \left\{ { - 4;\,\, - 3;\, - 2;\, - 1;\,\,0;\,\,1;\,\,2;\,\,3;\,\,4} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {MA} = \frac{1}{3}\overrightarrow {MB} \);                      
B. \(\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \);                 
C. \(\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \);                       
D. \(\overrightarrow {MB} = - 3\overrightarrow {MA} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\overrightarrow {AB} + \overrightarrow {BC} - \overrightarrow {BD} = \overrightarrow 0 \];                                 
B. \[\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 \]; 
C. \[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \overrightarrow 0 \];                                 
D. \[\overrightarrow {AD} - \overrightarrow {BC} = \overrightarrow 0 \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m = - \frac{5}{9}\);                                     
B. \(m = - \frac{9}{5}\).               
C. \(m = \frac{5}{9}\);    
D. \(m = \frac{9}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP