Câu hỏi:

18/11/2025 40 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A\left( {1;\,\, - 2} \right)\)\(B\left( {3;\, - 6} \right)\). Tọa độ vectơ \(\overrightarrow {AB} \)

A. \(\overrightarrow {AB} = \left( {1;\,\, - 2} \right)\);                      
B. \[\overrightarrow {AB} = \left( {2;\,\, - 4} \right)\];     
C. \(\overrightarrow {AB} = \left( {4;\,\, - 2} \right)\);     
D. \(\overrightarrow {AB} = \left( { - 2;\,\,4} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \(\overrightarrow {AB}  = \left( {3 - 1;\, - 6 - \left( { - 2} \right)} \right) = \left( {2;\,\, - 4} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) cùng hướng, biết \(\left| {\overrightarrow a } \right| = 5,\,\left| {\overrightarrow b } \right| = 3\). Giá trị \(\overrightarrow a \cdot \overrightarrow b \) bằng

A. – 15;                       
B. 15;                               
C. \(\frac{3}{5}\);            
D. \(\frac{5}{3}\).

Lời giải

Đáp án đúng là: B

Vì hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng nên \(\left( {\overrightarrow a ,\,\overrightarrow b } \right) = 0^\circ \).

Do đó, \(\overrightarrow a  \cdot \overrightarrow b  = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\,\overrightarrow b } \right) = 5 \cdot 3 \cdot \cos 0^\circ  = 15\).

Câu 2

A. \[\overrightarrow {CA} - \overrightarrow {BA} = \overrightarrow {BC} \];                                 
B. \[\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {BC} \]; 
C. \[\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {CB} \];                                 
D. \[\overrightarrow {AB} - \overrightarrow {BC} = \overrightarrow {CA} \].

Lời giải

Đáp án đúng là: C

Xét các đáp án, ta có:

+) \[\overrightarrow {CA}  - \overrightarrow {BA}  = \overrightarrow {CA}  + \overrightarrow {AB}  = \overrightarrow {CB}  \ne \overrightarrow {BC} \] , do đó đáp án A sai.

+) \(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD}  \ne \overrightarrow {BC} \) (với điểm \(D\) thỏa mãn \(ABDC\) là hình bình hành), do đó đáp án B sai.

+) \[\overrightarrow {AB}  + \overrightarrow {CA}  = \overrightarrow {CA}  + \overrightarrow {AB}  = \overrightarrow {CB} \], do đó đáp án C đúng.

+) \(\overrightarrow {AB}  - \overrightarrow {BC}  = \overrightarrow {CA}  \Leftrightarrow \overrightarrow {AB}  = \overrightarrow {BC}  + \overrightarrow {CA}  \Leftrightarrow \overrightarrow {AB}  = \overrightarrow {BA} \) (vô lí do \(A,\,\,B,\,\,C\) phân biệt), do đó đáp án D sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \);                                        
B. \(\overrightarrow {AI} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{2}\overrightarrow {AC} \);                
C. \(\overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} - \frac{1}{2}\overrightarrow {AC} \);                                             
D. \(\overrightarrow {AI} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác \[ABC\]\[G\] trọng tâm và \(I\) là trung điểm của đoạn thẳng \(BC\). Khẳng định nào sau đây là đúng?

A. \[\overrightarrow {GA} = 2\overrightarrow {GI} \];                                                                             
B. \[\overrightarrow {IG} = - \frac{1}{3}\overrightarrow {IA} \];                        
C. \[\overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GI} \];                                      
D. \[\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GA} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP