Cho hệ bất phương trình \(\left\{ \begin{array}{l}mx + 2y < - 9\\2x - m > 3y\end{array} \right.\) với \(m\) là tham số. Với giá trị nào của \(m\) thì cặp số \(\left( { - 1; - 3} \right)\) là nghiệm của hệ bất phương trình?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Thay \(x = - 1\) và \(y = - 3\) vào hệ bất phương trình ta được:
\(\left\{ \begin{array}{l}m\left( { - 1} \right) + 2.\left( { - 3} \right) < - 9\\2\left( { - 1} \right) - m > 3.\left( { - 3} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m < - 3\\ - m > - 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 3\\m < 7\end{array} \right. \Leftrightarrow 3 < m < 7\).
Vậy \(m = 5\) thỏa mãn điều kiện.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải

Gọi \(N\) là trung điểm của \[AD\]
Xet tam giác \(ADM\) có: \(\overrightarrow {MG} = \frac{2}{3}\overrightarrow {MN} \)
\( \Rightarrow \overrightarrow {MG} = \frac{2}{3}\left( {\overrightarrow {AN} - \overrightarrow {AM} } \right)\)
\( \Leftrightarrow \overrightarrow {MG} = \frac{2}{3}\overrightarrow {AN} - \frac{2}{3}\overrightarrow {AM} \)
\( \Leftrightarrow \overrightarrow {MG} = \frac{2}{3}.\frac{1}{2}\overrightarrow {AD} - \frac{2}{3}.\frac{1}{2}\overrightarrow {AB} \)
\( \Leftrightarrow \overrightarrow {MG} = \frac{1}{3}\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} \).
b)

Ta có: \(\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MI} ,\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \)
\( \Rightarrow \left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = 2\left| {\overrightarrow {MI} } \right| = 2MI,\left| {\overrightarrow {MA} - \overrightarrow {MB} } \right| = \left| {\overrightarrow {BA} } \right| = AB\)
\( \Rightarrow 2MI = AB\) hay \(MI = \frac{1}{2}AB = \frac{a}{2}\)
Suy ra tam giác \(ABM\) vuông tại \(M\)và nội tiếp đường tròn tâm \(I\) bán kính \(\frac{{AB}}{2}\).
Khi đó \(MH \le MI\)
\( \Rightarrow MH \le \frac{a}{2}\)
Vậy độ dài lớn nhất của \(MH\) là bằng \(\frac{a}{2}\) khi \(H\) trùng với với \(I\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Vì \(G\) là trọng tâm tam giác \(ABC\) nên \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \).
\( \Rightarrow \overrightarrow {GM} = \frac{1}{3}\overrightarrow {AM} \)
\( \Rightarrow \overrightarrow {AM} = 3\overrightarrow {GM} \)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.