Câu hỏi:

19/11/2025 41 Lưu

Bảng thống kê số lớp và số học sinh theo từng khối ở một trường Trung học phổ thông.

Khối

10

11

12

Số lớp

12

9

10

Số học sinh

530

312

358

Hiệu trưởng trường đó cho biết sĩ số mỗi lớp trong trường đều không vượt quá 40 học sinh. Khối lớp bị thống kê sai là

A. Khối lớp 10;                                                       
B. Khối lớp 11;                                 
C. Khối lớp 12;                                                        
D. Cả ba khối lớp đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

+) Khối lớp 10 có 12 lớp, nếu mỗi lớp có tối đa 40 người thì tổng cả khối có: 480 học sinh nghĩa là tổng số học sinh của khối lớp 10 sẽ không thể vượt quá 480 học sinh mà theo bảng thống kê ta có 530 > 480 nên khối lớp 10 đang bị thống kê sai.

+) Khối lớp 11 có 9 lớp, nếu mỗi lớp có tối đa 40 người thì tổng cả khối có: 360 học sinh nghĩa là tổng số học sinh của khối lớp 11 sẽ không thể vượt quá 360 học sinh mà theo bảng thống kê ta có 312 < 360 nên khối lớp 11 thống kê đúng.

+) Khối lớp 12 có 10 lớp, nếu mỗi lớp có tối đa 40 người thì tổng cả khối có: 400 học sinh nghĩa là tổng số học sinh của khối lớp 12 sẽ không thể vượt quá 400 học sinh mà theo bảng thống kê ta có 358 < 400 nên khối lớp 12 thống kê đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Vậy độ dài lớn nhất của \(MH\) là (ảnh 1)

Gọi \(N\) là trung điểm của \[AD\]

Xet tam giác \(ADM\) có: \(\overrightarrow {MG} = \frac{2}{3}\overrightarrow {MN} \)

\( \Rightarrow \overrightarrow {MG} = \frac{2}{3}\left( {\overrightarrow {AN} - \overrightarrow {AM} } \right)\)

\( \Leftrightarrow \overrightarrow {MG} = \frac{2}{3}\overrightarrow {AN} - \frac{2}{3}\overrightarrow {AM} \)

\( \Leftrightarrow \overrightarrow {MG} = \frac{2}{3}.\frac{1}{2}\overrightarrow {AD} - \frac{2}{3}.\frac{1}{2}\overrightarrow {AB} \)

\( \Leftrightarrow \overrightarrow {MG} = \frac{1}{3}\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} \).

b)

Vậy độ dài lớn nhất của \(MH\) là (ảnh 2)

Ta có: \(\overrightarrow {MA} + \overrightarrow {MB} = 2\overrightarrow {MI} ,\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \)

\( \Rightarrow \left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = 2\left| {\overrightarrow {MI} } \right| = 2MI,\left| {\overrightarrow {MA} - \overrightarrow {MB} } \right| = \left| {\overrightarrow {BA} } \right| = AB\)

\( \Rightarrow 2MI = AB\) hay \(MI = \frac{1}{2}AB = \frac{a}{2}\)

Suy ra tam giác \(ABM\) vuông tại \(M\)và nội tiếp đường tròn tâm \(I\) bán kính \(\frac{{AB}}{2}\).

Khi đó \(MH \le MI\)

\( \Rightarrow MH \le \frac{a}{2}\)

Vậy độ dài lớn nhất của \(MH\) là bằng \(\frac{a}{2}\) khi \(H\) trùng với với \(I\).

Câu 2

A. \(\overrightarrow {AM} = 2\overrightarrow {AG} \);                                 
B. \(\overrightarrow {AG} = 2\overrightarrow {MG} \);                            
C. \(\overrightarrow {AM} = 3\overrightarrow {GM} \);                                 
D. \(\overrightarrow {GM} = \frac{1}{2}\overrightarrow {GA} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

\(G\) là trọng tâm tam giác \(ABC\) nên \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \).

\( \Rightarrow \overrightarrow {GM} = \frac{1}{3}\overrightarrow {AM} \)

\( \Rightarrow \overrightarrow {AM} = 3\overrightarrow {GM} \)

Câu 3

A. \(y = {x^2} - 9x\);                                        
B. \(y = - 2{x^2} + 3x - 1\);
C. \(y = {x^2} - 4x + 3\);                                                                     
D. \(y = - 3{x^2} - 3x + 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(MABC\) là hình bình hành;                             
B. AM+AB=AC
C. \(\overrightarrow {BA} + \overrightarrow {BC} = \overrightarrow {BM} \);                                       
D. \(\overrightarrow {MA} = \overrightarrow {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(AB.BC.{\rm{cos}}\widehat {ABC}\);                                                                  
B. \(AB.AC.{\rm{cos}}\widehat {ABC}\);
C. \( - AB.BC.{\rm{cos}}\widehat {ABC}\);                                                                  
D. \(AB.BC.{\rm{cos}}\widehat {BAC}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 7,5;                        
B. 8;                             
C. 8,5;                              
D. 9.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = a\sqrt 2 \);                                                
B. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \frac{{a\sqrt 2 }}{2}\);                                            
C. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = 2a\);                                                          
D. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP