a) Cho góc \(x\) thỏa mãn \(0^\circ \le x \le 180^\circ .\)
Rút gọn biểu thức \(P = \sin \left( {90^\circ - x} \right){\rm{cos}}\,x + \sin \left( {180^\circ - x} \right)\sin \,x.\)
b) Hai tàu du lịch xuất phát từ hai thành phố cảng \(A\) và \(B\) cách nhau \(200\,(km)\) đến đảo \(C\) như hình minh họa.

Biết \(\widehat {CAB} = 30^\circ ;\,\,\widehat {CBA} = 45^\circ .\) Tàu 1 ở thành phố \(A\) khởi hành lúc 8h và chuyển động đều với vận tốc \(80\,(km/h)\). Tàu 2 ở thành phố \(B\) muốn đến đảo \(C\) cùng lúc với tàu 1 thì phải khởi hành lúc mấy giờ biết tàu 2 chuyển động đều cùng vận tốc \(80\,(km/h)\)(kết quả làm tròn đến hai chữ số sau dấu phẩy thập phân).
a) Cho góc \(x\) thỏa mãn \(0^\circ \le x \le 180^\circ .\)
Rút gọn biểu thức \(P = \sin \left( {90^\circ - x} \right){\rm{cos}}\,x + \sin \left( {180^\circ - x} \right)\sin \,x.\)
b) Hai tàu du lịch xuất phát từ hai thành phố cảng \(A\) và \(B\) cách nhau \(200\,(km)\) đến đảo \(C\) như hình minh họa.

Biết \(\widehat {CAB} = 30^\circ ;\,\,\widehat {CBA} = 45^\circ .\) Tàu 1 ở thành phố \(A\) khởi hành lúc 8h và chuyển động đều với vận tốc \(80\,(km/h)\). Tàu 2 ở thành phố \(B\) muốn đến đảo \(C\) cùng lúc với tàu 1 thì phải khởi hành lúc mấy giờ biết tàu 2 chuyển động đều cùng vận tốc \(80\,(km/h)\)(kết quả làm tròn đến hai chữ số sau dấu phẩy thập phân).
Quảng cáo
Trả lời:
Lời giải
a) Ta có \(P = \sin \left( {90^\circ - x} \right){\rm{cos}}\,x + \sin \left( {180^\circ - x} \right)\sin \,x\)
\( = \cos x.\cos x + \sin x.\sin x\)\( = {\cos ^2}x + {\sin ^2}x = 1\).
b) Ta có \(\widehat {BAC} = 180^\circ - 30^\circ - 45^\circ = 105^\circ \)(Theo định lý tổng ba góc trong tam giác).
Áp dụng định lý sin vào tam giác ABC, ta có
\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} \Leftrightarrow \frac{{200}}{{\sin 105^\circ }} = \frac{{BC}}{{\sin 30^\circ }} = \frac{{AC}}{{\sin 45^\circ }}\)
\( \Rightarrow \left\{ \begin{array}{l}AC \simeq 146,41\\BC \simeq 103,53\end{array} \right.\)
* Thời gian tàu \(1\) đi từ A đến C là: \(1,83\)(h) = \(1\)h \(50\) phút.
* Thời điểm tàu \(1\) đến C là: \(9\)h \(50\) phút.
* Thời gian tàu \(2\) đi từ B đến C là \(1,29\)(h) = \(1\)h \(17\) phút.
* Thời điểm xuất phát của tàu \(2\)là: \(8\)h \(33\) phút.a
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Giao của hai tập hợp \(A\) và \(B\) là một tập hợp gồm các phân tử thuộc cả hai tập hợp.
Ta có \(A \cap B = \left\{ {1;3} \right\}\).
Câu 2
Lời giải
Chọn D
· Điểm thuộc miền nghiệm của bất phương trình là điểm có toạ độ thoả mãn bất phương trình đã cho.
Chú ý: Bất phương trình có dấu bằng thì miền nghiệm lấy cả biên (bờ).
· Lấy điểm \(O\left( {0;0} \right)\) thay vào các bất phương trình, ta thấy thoả mãn đáp án D.
Mẹo nhỏ: Miền nghiệm có phần đường thẳng vẽ nét liền là bất phương trình có dấu bằng. Miền nghiệm có phần đường thẳng vẽ nét đứt là bất phương trình không có dấu bằng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

