Câu hỏi:

16/12/2025 54 Lưu

Cho hình chóp \(S.ABCD\)có đáy \(ABCD\) là hình chữ nhật tâm \(I\), cạnh bên \(SA\) vuông góc với đáy. Khẳng định nào sau đây đúng?

A. \[\left( {SCD} \right) \bot \left( {SAD} \right) \cdot \]                                     

B. \[\left( {SBC} \right) \bot \left( {SIA} \right) \cdot \]

C. \[\left( {SDC} \right) \bot \left( {SAI} \right) \cdot \]  

D. \[\left( {SBD} \right) \bot \left( {SAC} \right) \cdot \]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Khẳng định nào sau đây đúng? (ảnh 1)

Ta có:

\[CD \bot AD\](vì \(ABCD\) là hình chữ nhật)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot CD\)

\(SA \cap AD = A\)

\(SA,AD \subset \left( {SAD} \right)\)

\( \Rightarrow CD \bot \left( {SAD} \right)\)

Mà \[CD \subset \left( {SCD} \right)\] nên \[\left( {SCD} \right) \bot \left( {SAD} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Nghiệm của phương trình là các số vô tỷ.

Đúng
Sai

b) Tổng các nghiệm của một phương trình là một số nguyên.

Đúng
Sai

c) Tích các nghiệm của phương trình là một số âm.

Đúng
Sai
d) Phương trình vô nghiệm.
Đúng
Sai

Lời giải

a) Sai

b) Sai

c) Đúng

d) Sai

\[{2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {16^{{x^2} - 1}} \Leftrightarrow {2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {2^{4{x^2} - 4}} \Leftrightarrow \left| {\frac{{28}}{3}x + 4} \right| = 4{x^2} - 4\,\,\left( 1 \right).\]

TH1: Nếu \[x >  - \frac{3}{7}.\] PT \[\left( 1 \right):\] \[\frac{{28}}{3}x + 4 = 4{x^2} - 4 \Leftrightarrow 4{x^2} - \frac{{28}}{3}x - 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\,\,\,\,\left( {TM} \right)\\x =  - \frac{2}{3}\,\,\,\left( L \right)\end{array} \right.\]

TH1: Nếu \[x \le  - \frac{3}{7}.\] PT \[\left( 1 \right):\] \[ - \frac{{28}}{3}x - 4 = 4{x^2} - 4 \Leftrightarrow 4{x^2} + \frac{{28}}{3}x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\,\left( L \right)\\x =  - \frac{7}{3}\,\,\,\left( {TM} \right)\end{array} \right.\]

Phương trình có tập nghiệm \[S = \left\{ { - \frac{7}{3};\,3} \right\}\].

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh AB = a, AD = căn bậc hai 3 a. Cạnh bên SA = a căn bậc hai 2 và vuông góc mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng (SAC) bằng: (ảnh 1)

Kẻ \[BH \bot AC\] và \[H \in AC\]\[ \Rightarrow \]\[BH \bot \left( {SAC} \right)\].

\[SH\] là hình chiếu của \[BH\] trên mặt phẳng \[\left( {SAC} \right)\].

Góc giữa \[SB\] và mặt phẳng \[\left( {SAC} \right)\] là \[\widehat {BSH}\].

Ta có \[BH = \frac{{AB.BC}}{{\sqrt {A{B^2} + B{C^2}} }} = \frac{{a\sqrt 3 }}{2}\], \[SB = \sqrt {S{A^2} + A{B^2}}  = a\sqrt 3 \].

Trong tam giác vuông \[SBH\] ta có \[\sin \widehat {BSH} = \frac{{BH}}{{SB}} = \frac{1}{2}\]\[ \Rightarrow \widehat {BSH} = 30^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP