Câu hỏi:

16/12/2025 53 Lưu

Phần 2. Câu trắc nghiệm đúng sai.

Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai

Lớp \(11\;A\) có 50 học sinh, trong đó có 20 học sinh thích học môn Toán; 30 học sinh thích học môn Ngữ văn; 10 học sinh thích học môn Toán và Ngữ văn. Chọn ngẫu nhiên một học sinh trong lớp 11A. Gọi \(A\) là biến cố "Học sinh thích học môn Toán", \(B\) là biến cố "Học sinh thích học môn Ngữ văn".

a) Khi đó \(A \cup B\) là biến cố "Một học sinh của lớp 11A thích học ít nhất một trong hai môn Toán và Ngữ văn".

Đúng
Sai

b) \(P(A) = \frac{{20}}{{50}}\)

Đúng
Sai

c) \(P(AB) = \frac{6}{{25}}\)

Đúng
Sai
d) Xác suất để chọn được một học sinh thích học ít nhất một trong hai môn Toán và Ngữ văn là \(\frac{4}{5}\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Đúng

Khi đó \(A \cup B\) là biến cố "Một học sinh của lớp 11A thích học ít nhất một trong hai môn Toán và Ngữ văn”.

Ta có \(P(A \cup B) = P(A) + P(B) - P(AB) = \frac{{20}}{{50}} + \frac{{30}}{{50}} - \frac{{10}}{{50}} = \frac{{40}}{{50}} = \frac{4}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Nghiệm của phương trình là các số vô tỷ.

Đúng
Sai

b) Tổng các nghiệm của một phương trình là một số nguyên.

Đúng
Sai

c) Tích các nghiệm của phương trình là một số âm.

Đúng
Sai
d) Phương trình vô nghiệm.
Đúng
Sai

Lời giải

a) Sai

b) Sai

c) Đúng

d) Sai

\[{2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {16^{{x^2} - 1}} \Leftrightarrow {2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {2^{4{x^2} - 4}} \Leftrightarrow \left| {\frac{{28}}{3}x + 4} \right| = 4{x^2} - 4\,\,\left( 1 \right).\]

TH1: Nếu \[x >  - \frac{3}{7}.\] PT \[\left( 1 \right):\] \[\frac{{28}}{3}x + 4 = 4{x^2} - 4 \Leftrightarrow 4{x^2} - \frac{{28}}{3}x - 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\,\,\,\,\left( {TM} \right)\\x =  - \frac{2}{3}\,\,\,\left( L \right)\end{array} \right.\]

TH1: Nếu \[x \le  - \frac{3}{7}.\] PT \[\left( 1 \right):\] \[ - \frac{{28}}{3}x - 4 = 4{x^2} - 4 \Leftrightarrow 4{x^2} + \frac{{28}}{3}x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\,\left( L \right)\\x =  - \frac{7}{3}\,\,\,\left( {TM} \right)\end{array} \right.\]

Phương trình có tập nghiệm \[S = \left\{ { - \frac{7}{3};\,3} \right\}\].

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh AB = a, AD = căn bậc hai 3 a. Cạnh bên SA = a căn bậc hai 2 và vuông góc mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng (SAC) bằng: (ảnh 1)

Kẻ \[BH \bot AC\] và \[H \in AC\]\[ \Rightarrow \]\[BH \bot \left( {SAC} \right)\].

\[SH\] là hình chiếu của \[BH\] trên mặt phẳng \[\left( {SAC} \right)\].

Góc giữa \[SB\] và mặt phẳng \[\left( {SAC} \right)\] là \[\widehat {BSH}\].

Ta có \[BH = \frac{{AB.BC}}{{\sqrt {A{B^2} + B{C^2}} }} = \frac{{a\sqrt 3 }}{2}\], \[SB = \sqrt {S{A^2} + A{B^2}}  = a\sqrt 3 \].

Trong tam giác vuông \[SBH\] ta có \[\sin \widehat {BSH} = \frac{{BH}}{{SB}} = \frac{1}{2}\]\[ \Rightarrow \widehat {BSH} = 30^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP