Câu hỏi:

16/12/2025 30 Lưu

Cho hình chóp \(SABC{\rm{D}}\) có \(SA = x\) và tất cả các cạnh đều bằng nhau và bằng \(a\). Các mệnh đề sau đúng hay sai?

a) \(\left( {SAC} \right) \bot \left( {ABC{\rm{D}}} \right)\).

Đúng
Sai

b) Tam giác \(SAC\) là tam giác vuông

Đúng
Sai

c) \(\left( {SAC} \right) \bot \left( {SB{\rm{D}}} \right)\).  

Đúng
Sai
d) Chiều cao của hình chóp\(S.ABC{\rm{D}}\) là \(h = \frac{{\sqrt {{a^2} + {x^2}} }}{2}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Đúng

d) Sai

Media VietJack

Tứ giác \(ABCD\) có \(4\) cạnh bằng nhau \( \Rightarrow ABCD\) là hình thoi.

Gọi H là hình chiếu vuông góc của \(S\) lên \(\left( {ABCD} \right)\)

Vì \(SB = SC = SD\) \( \Rightarrow H\) là tâm đường tròn ngoại tiếp \(\Delta BC{\rm{D}}\)

Vì \(\Delta BC{\rm{D}}\) cân nên \(H\) thuộc trung tuyến kẻ từ \(C\).

\( \Rightarrow H \in AC\).

Nên đáp án \(A,\,C\)đúng.

Mà ta có: \( \Rightarrow H \in AC\).

Mà ta có: \(\Delta ABD = \Delta CBD = \Delta SBD\,\,(c - c - c) \Rightarrow AD = CO = SO \Rightarrow SO = \frac{1}{2}AC\)

\( \Rightarrow \Delta SAC\)vuông tại \(S\). Do đó đáp án b đúng.

Trong tam giác \(SAC\), kẻ \(SH \bot AC\).

Khi đó ta có: \(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right) \Rightarrow BD \bot SH\)\( \Rightarrow SH \bot (ABCD)\)

Suy ra: \(\frac{1}{{S{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{S{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{x^2}}} \Rightarrow SH = h = \frac{{{\rm{ax}}}}{{\sqrt {{a^2} + {b^2}} }}\).

Do đó đáp án d sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {64,3^0}\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAD = 120,SA vuông góc (ABCD) và SA = căn bậc hai 3 a. Tính góc giữa đường thẳng SC và mặt phẳng (SAD)? (ảnh 1)

Xét \(\Delta ADC\) cân tại \(D\), có \(\widehat {{\mkern 1mu} D{\mkern 1mu} } = {60^^\circ }\) nên \(\Delta ADC\) đều.

Kẻ \(CI \bot AD\)

Ta có: \(CI \bot SA \Rightarrow CI \bot (SAD)\) tại \(I\) và \(SC\) cắt mp \((SAD)\) tại \(S\) \( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp\((SAD)\)

\( \Rightarrow (SC,(SAD)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(SI = \sqrt {S{A^2} + A{I^2}}  = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{\sqrt {13} }}{2}a\)

Xét \(\Delta SCI\) vuông tại \(I:\tan \widehat {CSI} = \frac{{SI}}{{IC}} = \frac{{\frac{{a\sqrt {13} }}{2}}}{{\frac{{\sqrt 3 a}}{2}}} = \frac{{\sqrt {39} }}{3} \Rightarrow \widehat {CSI} \approx {64,3^0}\)

Lời giải

Chọn D.

Ta có: \(P(A \cup B) = P(A) + P(B) - P(AB) = 0,3 + 0,4 - 0,2 = 0,5\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Nghiệm của phương trình là các số vô tỷ.

Đúng
Sai

b) Tổng các nghiệm của một phương trình là một số nguyên.

Đúng
Sai

c) Tích các nghiệm của phương trình là một số âm.

Đúng
Sai
d) Phương trình vô nghiệm.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP