Câu hỏi:

18/12/2025 19 Lưu

Cho tam giác \(ABC\)\(AB = a,AC = 2a,\widehat A = 60^\circ \). \(M\) là điểm thỏa mãn \(2\overrightarrow {MA} + 3\overrightarrow {MB} = \overrightarrow 0 \).

a) Điểm \(M\) nằm giữa hai điểm \(A\)\(B\).

b) \(\overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} \).

c) \(\overrightarrow {CM} = - \frac{2}{5}\overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} \).

d) \(\overrightarrow {CA} \cdot \overrightarrow {CM} = \frac{{17}}{5}{a^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tam giác ABC có AB = a , AC =2a , góc A = 60 độ (ảnh 1)

a) \(2\overrightarrow {MA} + 3\overrightarrow {MB} = \overrightarrow 0 \) nên \(\overrightarrow {MA} ,\overrightarrow {MB} \) là hai vectơ ngược hướng.

Suy ra điểm \(M\) nằm giữa hai điểm \(A\)\(B\).

b) \(2\overrightarrow {MA} + 3\overrightarrow {MB} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {MA} = - \frac{3}{2}\overrightarrow {MB} \)\( \Leftrightarrow \overrightarrow {AM} = \frac{3}{2}\overrightarrow {MB} \)\( \Leftrightarrow \overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} \).

c) \(\overrightarrow {CM} = \overrightarrow {CA} + \overrightarrow {AM} = - \overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} \).

d) \(\overrightarrow {CA} \cdot \overrightarrow {CM} = \overrightarrow {CA} \left( { - \overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} } \right)\)\( = {\overrightarrow {AC} ^2} - \frac{3}{5}\overrightarrow {AC} \cdot \overrightarrow {AB} \)\( = {\overrightarrow {AC} ^2} - \frac{3}{5}\left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos \left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right)\)

\( = 4{a^2} - \frac{3}{5} \cdot 2a \cdot a \cdot \cos 60^\circ \)\( = 4{a^2} - \frac{3}{5}{a^2} = \frac{{17}}{5}{a^2}\).

Đáp án: a) Đúng;    b) Đúng;     c) Sai;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\). Gọi \(M\) là điểm trên cạnh \(BC\) sao cho \(MB = 4MC\) (ảnh 1)

\(\overrightarrow {MB} \)\(\overrightarrow {MC} \) ngược hướng và \(MB = 4MC\) nên \(\overrightarrow {MB} = - 4\overrightarrow {MC} \). Suy ra \(\overrightarrow {BM} = \frac{4}{5}\overrightarrow {BC} \).

Khi đó \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + \frac{4}{5}\overrightarrow {BC} = \overrightarrow {AB}  + \frac{4}{5}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\)\( = \frac{1}{5}\overrightarrow {AB} + \frac{4}{5}\overrightarrow {AC} \).

Suy ra \(m = \frac{1}{5};n = \frac{4}{5}\). Vậy \(6m + n = 2\).

Câu 3

A. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AM} \).                                              

B. \(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \).  

C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 3\overrightarrow {GM} \).  
D. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Góc giữa hai vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \) bằng \(30^\circ \).

Đúng
Sai

b) \(\overrightarrow {AC} \cdot \overrightarrow {BD} = 0\).

Đúng
Sai

c) \(\overrightarrow {AE} \cdot \overrightarrow {CD} = \overrightarrow {AD} \cdot \overrightarrow {CD} + \overrightarrow {DE} \cdot \overrightarrow {CD} \).

Đúng
Sai
d) \(\overrightarrow {AD} \cdot \overrightarrow {AC} = 144\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP